
THE NAS KERNEL BENCHMARK PROGRAM

David H. Bailey and John T. Barton

Numerical Aerodynamic Simulations Systems Division
NASA Ames Research Center

June 13, 1986

SUMMARY

A benchmark test program that measures supercomputer performance has been devel-
oped for the use of the NAS (Numerical Aerodynamic Simulation) Projects Office at NASA
Ames Research Center. This benchmark program is described in detail and the specific
ground rules for running the program as a performance test are discussed.

1

INTRODUCTION

A benchmark test program has been developed for use by the NAS program at NASA
Ames Research Center to aid in the evaluation of supercomputer performance. This pro-
gram consists of seven Fortran test kernels that perform calculations that are typical of
Ames supercomputing. It is expected that the performance of a supercomputer system
on this program will provide an accurate projection of the performance of the system on
actual NAS program computer codes. This paper describes the test program in detail and
lists the specific ground rules that have been established for running the program as a
performance test.

PROGRAM DESCRIPTION

The NAS Kernel Benchmark Program consists of approximately 1000 lines of Fortran
code, organized into seven separate tests. Each individual test consists of a loop that it-
eratively calls a certain subroutine. These subroutines were chosen after review of many
of the calculations currently being performed on Ames supercomputers and by recommen-
dations from a number of Ames scientists and programmers, particularly those working
on computational fluid dynamics problems. In most cases, these subroutines have been
extracted from actual programs currently in use, and they have been incorporated into the
NAS Kernel Benchmark Program with only minor changes. Thus it is felt that these test
kernels are a representative cross section of expected NAS program supercomputing, and
the performance of a computer system (both its hardware and its Fortran compiler) on
these tests should be a reliable predictor of the actual system performance on NAS user
programs.

The seven selected programs all emphasize the vector performance of a computer sys-
tem. Almost all of the floating-point operations indicated in these Fortran subroutines are
contained in loops that are computable by vector operations, provided that the Fortran
compiler of the computer system being tested is sufficiently powerful in its vectorization
analysis, and provided that the hardware design of the computer includes the necessary
vector instructions. Most serious supercomputer programs currently in use at Ames are
fairly highly vectorized, and it is expected that programs to be developed in the future
will virtually all be designed to effectively use the vector processing capabilities of super-
computers. Some programs that have substantial scalar processing will continue to be
used, but it is expected that their numbers will decline as algorithms and codes that are
more suitable for vector processing are developed. Another reason for emphasizing vector
performance in these benchmark kernels is that it is not very meaningful to average, even
in a harmonic average sense, the performance of a supercomputer on a scalar code with its
performance on a vector code.

This program not only tests the hardware execution speed of a computer, but it also
tests the effectiveness of the Fortran compiler. It is clear that a phenomenally fast hardware

2

design is worthless unless it is coupled with a Fortran compiler that can fully utilize the ad-
vanced hardware design. Furthermore, it is becoming increasingly clear that vectorization
and other optimizations must either be completely automatic or be very easy to direct.
If effective utilization of a computer requires massive redesign of otherwise well-written,
standard Fortran-77 code, or if a high level of performance is possible only by considerable
human intervention, then the actual usable power of the computer is severely reduced.

The seven test kernels of the NAS Kernel Benchmark Program have, for the most part,
been developed quite recently. As a result, they represent Fortran programs that have been
designed and written for modern vector computation, as opposed to the somewhat dated
code that is used for other popular benchmark programs. It might be argued that there
is some inherent bias in the test towards the Cray computers, since most of these kernels
were written on a Cray X-MP. However, substantial care was exercised in the selection of
these kernels to insure that none of them had any constructs that would unduly favor the
Cray line. As much as possible, subroutines were selected that were merely straightforward
Fortran code, intelligently coded with loops that are capable of being executed with vector
operations, but otherwise neutral towards any particular machine. In fact, in the process
of selecting these kernels for testing, it was discovered that some of them actually caused
unforeseen difficulties for the Cray compiler. Nevertheless, they were left in the test suite
to maintain objectivity.

Performance is measured by the NAS Kernel Benchmark Program in MFLOPS (millions
of floating-point operations per second). The precise number of floating-point operations
for the various functions used in the test kernels is shown in Table 1. These numbers are
based on actual counts of 64-bit floating-point operations in published algorithms.

It should be noted that this program only measures MFLOPS rates. Disk I/O, operating
system efficiency, and other important factors of overall performance are not measured by
this benchmark program. Also, several of the test subroutines perform a significant amount
of memory move, integer, and logical operations, none of which is included in the floating-
point operation count.

The following is a description of the seven proposed Fortran test kernels. Other features
are summarized in Table 2.

1. MXM – This subroutine performs the usual matrix product on two input matrices.
The subroutine employs a four-way unrolled, outer product matrix multiply algorithm
that is especially effective for most vector computers. See [1] for a discussion of this
algorithm.

2. CFFT2D – This test performs a complex radix 2 FFT on a two dimensional input ar-
ray, returning the result in place. The test kernel actually consists of two subroutines
that perform FFTs along the first and second dimension of the array, respectively,
taking advantage of the parallel structure of the array. See [2] for a discussion of the
FFT algorithm used.

3

Table 1: Floating-point Operation Counts

FIRST SECOND FLOATING
ARGUMENT FUNCTION ARGUMENT PT. OPS.

Real + Real 1
Real - Real 1
Real * Real 1

1 / Real 2
Real / Real 3
Real ** 2 1
Real ** Real 45

Complex * Real 2
Complex / Real 4

1 / Complex 7
Real / Complex 9

Complex + Complex 2
Complex - Complex 2
Complex * Complex 6
Complex / Complex 13

Real SQRT 12
Real EXP 18
Real LOG 25
Real SIN 25
Real ATAN 25

Complex ABS 15
Complex EXP 70
Complex LOG 65

4

Table 2: Kernel Features

KERNEL
FEATURE 1 2 3 4 5 6 7
Two dimensional arrays X X X X X
Multidimensional arrays X X X
Dimensions with colons X
Integer arrays X X X
Integer functions in indices X X
IF statements in inner loops X
Scientific function calls X X X X
Complex arithmetic X X X
Complex function calls X X
Inner loop memory strides 1 1 1 1 1 1 128

2 4 2 2
256 750 500

900
Inner loop vector lengths 256 128 250 28 5 100 128

256 100 500
500 1000

3. CHOLSKY – This subroutine performs a Cholesky decomposition in parallel on a
set of input matrices, which are actually input to the subroutine as a single three-
dimensional array.

4. BTRIX – This kernel performs a block tridiagonal matrix solution along one dimen-
sion of a four dimensional array.

5. GMTRY – This subroutine sets up arrays for a vortex method solution and performs
Gaussian elimination on the resulting array. This kernel is noted for a number of
loops that are challenging to vectorize.

6. EMIT – Also extracted from a vortex code, this subroutine creates new vortices
according to certain boundary conditions.

7. VPENTA – This subroutine simultaneously inverts three matrix pentadiagonals in a
highly parallel fashion.

In each of the above test subroutines, the input data arrays are filled by a portable
pseudorandom number generator in the calling program. This feature insures that all com-
puters running the NAS Kernel Benchmark Program will perform the required calculations

5

on the same numbers. It also permits the output results to be checked for accuracy. Each
of the seven tests is independent from the others – none depends on results calculated in
a previous test program. Thus program alterations to improve the execution speed of one
of the test kernels may be made without fear of affecting the other kernels.

GROUND RULES FOR PERFORMANCE TESTING

Worlton’s recent article [3] pointed out some of the difficulties that are involved in
supercomputer performance testing. Most of these problems are a result of the lack of
well-defined controls on these tests. For instance, in some recent test results, one vendor
was apparently allowed to perform some minor tuning and insertion of compiler directives,
whereas the other was not. In other cases confusion has resulted from researchers not
carefully noting exactly which version of a vendor’s compiler was being used in their tests.
Some vendors have claimed amazingly high performance rates for their computers, which,
upon closer analysis, have been achieved only by massive recoding of the test kernels
and by the usage of assembly code. As a result of these difficulties, many of the recent
comparisons of supercomputer performance have degenerated into shouting matches that
have generated more heat than light.

In consideration of such problems, some strict ground rules have been established for
using the NAS Kernel Benchmark Program to evaluate supercomputer performance. Also,
four levels of tests have been defined, so that the effects of varying amounts of tuning may
be assessed. These different levels will also enable the NAS program to differentiate the
performance of the hardware from that of the compiler. If the compiler is truly effective,
then a relatively small amount of tuning should be sufficient to achieve close to the full
potential of the hardware. The four test levels are defined as follows:

1. Level 0 (“dusty deck”): For this test, the NAS Kernel Benchmark Program must be
run without any changes to improve performance. If any alterations are required for
compatibility purposes (for example, to define the timing function), they must be
made by NAS program personnel.

2. Level 20 (“minor tuning”): For this test, a few minor alterations may be made to
the code to enhance performance. These changes may include, for example, compiler
directives to assist the compiler’s vectorization analysis or changes to array dimen-
sions to avoid disadvantageous memory strides. No more than 20 lines of code in the
entire program file may be inserted or modified.

3. Level 50 (“major tuning”): For this test, more extensive modifications may be made
to the code to enhance performance. For example, some loops may be rewritten to
avoid constructs that cause difficulties for the compiler or the hardware. A total of
up to 50 lines of the program file may be inserted or modified for this test.

6

4. Level 1000 (“customized code”): For this test, large scale coding changes are allowed
to improve performance. Entire subroutines may be rewritten to avoid difficult con-
structs. There is no limit to the number of lines of code that may be inserted or
modified.

For all four levels of tests, any modifications made to the program code must conform
to the ANSI Fortran-77 standard [4]. In particular, absolutely no assembly code will
be allowed within the program file, and no external programs may be referenced other
than the standard Fortran functions. Fortran subprograms may be referenced only if the
Fortran code for the subprograms is included in the program file and conforms to the other
requirements mentioned in this paper. Finally, no modification to the algorithms in the
code may change the number of floating-point operations performed.

The precision level of all floating-point data and operations in the program must be
64 bits, with at least 47 mantissa bits. As a test of the hardware precision, and to ensure
that any modifications made to the program file have not fundamentally changed the
calculations being performed, an accuracy check is included with each of the seven tests.
These checks are performed by comparing a selected result from each of the programs with
a reference value stored in the program code and then computing the fractional error. The
total of the fractional errors from the seven programs must be less than 5 × 10−10.

The NAS Kernel Benchmark Program automatically calculates performance statistics
and outputs this report on Fortran unit 6. This report includes the results of the accuracy
checks, the number of floating-point operations performed, the CPU run times, and the
resulting MFLOPS rates. The total error, total floating-point operation count, total CPU
time, and the overall MFLOPS rate are also included.

Normally only uniprocessor results are tabulated. If desired, multiprocessor perfor-
mance may be estimated by simultaneously running the benchmark program on each of
the individual processors. A multiprocessing performance figure may then computed by
averaging the timings from the runs on the individual processors. Although no explicit
multiprocessing is performed in this manner, such an exercise measures the amount of
interprocessor resource contention, which is a significant factor in multiprocessing. In this
way the performance increase that can be expected from multiple processor computation
can be estimated without making the laborious modifications that are usually required to
invoke true multiprocessing.

7

REFERENCES

1. Hockney, R. W., and Jesshope, C. R., Parallel Computers, Adam Hilger, Bristol,
England, 1981.

2. Brigham, E. Oran, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs,
N.J., 1974.

3. Worlton, Jack, “Understanding Supercomputing Benchmarks”, Datamation, Septem-
ber 1, 1984, p. 121.

4. American National Standards Institute, ANSI Fortran X3.9-1978, ANSI, New York,
1978.

8

APPENDIX:

PROGRAM LISTING

9

