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We start off with our generic wave function Ψ(x, t). This can be written as

Ψ(x, t) = A cos (ωt− kx)

Now, since the angular frequency is defined to be ω = 2πν and the wave number is de-

fined to be k =
2π

λ
, we can substitute these quantities into the equation to get Ψ(x, t) =

A cos (2πνt− 2π

λ
). Additionally, we know that E = hν and λ =

h

p
. Substituting these

quantities into the equation, factoring, and replacing
2π

h
with

1

~
, we get an alternate form

of the wave function:

Ψ(x, t) = A cos
1

~
(Et− px)

Theorem 0.1. (Fourier’s Theorems)

1. Any periodic waveform can be represented by a discrete series of sines and cosines:

f(x) =
∞∑
i=1

ai cos (ωit− kix) + bi sin (ωit− kix)

2. Any waveform can be represented as a continuous sum of sines and cosines (Fourier
transform):

f(x) =

∫ ∞
−∞

A(k) cos (ωt− kx) +B(k) sin(ωt− kx) dx

Luckily, for a lot of waveforms, you can get away with just one sine or cosine and thus
just one set of coefficients. Also, it turns out that the Fourier conjugate of a very localized
waveform will be spread out. Thus, if position and momentum (or energy and time, etc) are
Fourier conjugates, and if you know the position to a high degree of accuracy, then you don’t
know the momentum very well and vice versa. Heisenberg found out that you can quantify

this as ∆x∆p ≥ ~
2

, and that is what we will derive.
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Since Ψ(x) is a waveform, we can write it as a Fourier series:

Ψ(x) =

∫ ∞
−∞

g(k) cos kx dk

or
Ψ(x) = F [g(k)]

How do we find the coefficients? We should expect the classical momentum to be the
average value, and other values to be less probable - in other words, some sort of probability
distribution. Specifically, the normal distribution, meaning probability Pk = Ake

−(k−k0)/(2σ2
k).

This implies that
g(k) =

√
Pk =

√
Ake

−(k−k0)/(4σ2
k)

Now, consider the square of the norm of the wavefunction, |Ψ|2. This is a probability
distribution; it tells you where the particle is most likely to be. Like earlier, we want the
middle value to be the classical position. Like earlier, it happens to be a normal distribution.
If we let x0 be the most likely position for the particle, then a normal distribution of the
positions is Px = Axe

−(x−x0)2/(2σ2
x).Now, we will denote the envelope of a function f by fenv.

Since Px happens to be the upper envelope of |Ψ(x)|2, Ψ(x)env happens to be

Ψ(x)env =
√
Px =

√
Axe

−(x−x0)2/(4σ2
x)

Additionally,

∫ ∞
−∞

Px dx =

∫ ∞
−∞
|Ψ(x)|2 dx = 1, because the sum of all the probabilities

must be 1. This means we can find the coefficients Ax by simply normalizing the normal
distribution; this gets us

Ax =
1

σx
√

2π

Now, we state that Ψ(x) = Fg(k) in the following way:

Ψ(x) =

∫ ∞
−∞

g(k) cos kx dk

and since Ψ(x) and g(k) are Fourier conjugates the following is true as well:

g(k) =

∫ ∞
−∞

Ψ(x) cos kx dx

Substituting our results above gives√
Ake

−(k−k0)2/(4σ2
k) =

∫ ∞
−∞

1√
σx
√

2π
e−(x−x0)2/(4σ2

x) cos kx dx (1)
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Since the function Ψ(x) cos kx is even, its integral from negative infinity to infinity is simply
twice its integral from zero to infinity. The integral of that function is well known and can
be found in integral tables: ∫ ∞

0

e−a
2x2

cos bx dx =

√
π

2a
e
−b2
4a2

In the case of Ψ(x), first we note that we may as well choose x0 = k0 = 0, and we also have

a2 =
1

4σ2
x

⇔ a =
1

2σx
and b = k. Let’s see how our integral from (1) looks now:

√
Ake

−k2/(4σ2
k) = 2

∫ ∞
0

1
√
σx
e−x

2/(4σ2
x) cos kx dx =

2
√
π

2
(

1
2σx

)e−k2/(4( 1

4σ2
x

))

The
√
Ak and

2
√
π

2
(

1
2σx

) are equal (?), so when we cancel that we get

e
−k2

4σ2
k = e

−k2

4

 
1

4σ2
x

!

Now we take the natural log of both sides and we’re left with

−k2

4σ2
k

=
−k2

4
(

1
4σ2
x

)
This simplifies to σ2

k =
1

4σ2
x

or

σk · σx =
1

2

But we know that the wave number k =
p

~
, so

σxσp =
~
2

Note that this is true only if the probability distribution is normal. If it isn’t σpσx will be
greater, as the normal distribution turns out to have the minimum possible product. This
means that we can write our more general physical law as

σxσp ≥
~
2

or as

∆x∆p ≥ ~
2
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