
  

Recent Progress in the Design 
and Analysis of Admissible 

Heuristic Functions

Richard E. Korf

Computer Science Department

University of California, Los Angeles



  

Thanks 

• Victoria Cortessis

• Ariel Felner

• Rob Holte

• Kaoru Mulvihill

• Nathan Sturtevant



  

Heuristics come from 
Abstractions

• Admissible (lower bound) heuristic 
evaluation functions are often the cost of 
exact solutions to abstract problems.

• E.g. If we relax the Fifteen Puzzle to allow 
a tile to move to any adjacent position, the 
cost of an exact solution to this simplified 
problem is Manhattan distance.



  

Outline of Talk

• New methods for the design of more 
accurate heuristic evaluation functions.

• A new method to predict the running time 
of admissible heuristic search algorithms



  

Fifteen Puzzle

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



  

Fifteen Puzzle 

• Invented by Sam Loyd in 1870s

• “...engaged the attention of nine out of ten 
persons of  both sexes and of all ages and 
conditions of the community.”

• $1000 prize to swap positions of two tiles



  

Swap Two Tiles

1 2 3
4 5 6 7
8 9 10 11
12 13 14 1515

1 2 3
4 5 6 7
8 9 10 11

13 1412

(Johnson & Storey, 1879) proved it’s impossible.



  

Twenty-Four Puzzle

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24



  

 Rubik’s Cube



  

Rubik’s Cube 

• Invented in 1974 by Erno Rubik of Hungary

• Over 100 million sold worldwide

• Most famous combinatorial puzzle ever



  

Finding Optimal Solutions

• Input: A random solvable initial state

• Output: A shortest sequence of moves that 
maps the initial state to the goal state

• Generalized sliding-tile puzzle is NP 
Complete (Ratner and Warmuth, 1986)

• People can’t find optimal solutions.

• Progress measured by size of problems that 
can be solved optimally.



  

Sizes of Problem Spaces

• 8 Puzzle:              105               .01 seconds

• 23 Rubik’s Cube: 106                .2 seconds

• 15 Puzzle:            1013             6 days

• 33 Rubik’s Cube: 1019             68,000 years   

• 24 Puzzle:            1025             12 billion years

Brute-Force Search Time 
(10 million nodes/second)

Problem Nodes



  

A* Algorithm

• Hart, Nilsson, and Raphael, 1968

• Best-first search with cost function 
f(n)=g(n)+h(n)

• If h(n) is admissible (a lower bound 
estimate of optimal cost), A* guarantees 
optimal solutions if they exist.

• A* stores all the nodes it generates, 
exhausting available memory in minutes.



  

Iterative-Deepening-A* (IDA*)

• IDA* (Korf, 1985) is a linear-space version 
of A*, using the same cost function.

• Each iteration searches depth-first for 
solutions of a given length.

• IDA* is simpler, and often faster than A*, 
due to less overhead per node.

• Key to performance is accurate heuristic 
evaluation function.



  

Manhattan Distance Heuristic

Manhattan distance is 6+3=9 moves

1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

15 1 2 3
4 5 6 7
8 9 10 11

13 14 12



  

Performance on 15 Puzzle

• Random 15 puzzle instances were first 
solved optimally using IDA* with 
Manhattan distance heuristic (Korf, 1985).

• Optimal solution lengths average 53 moves.

• 400 million nodes generated on average.

•  Average solution time is about 50 seconds 
on current machines.



  

Limitation of Manhattan 
Distance

• To solve a 24-Puzzle instance, IDA* with 
Manhattan distance would take about 
65,000 years on average.

• Assumes that each tile moves independently

• In fact, tiles interfere with each other.

• Accounting for these interactions is the key 
to more accurate heuristic functions.



  

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves



  

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves



  

Example: Linear Conflict

1 33
1

Manhattan distance is 2+2=4 moves



  

Example: Linear Conflict

1 33
1

Manhattan distance is 2+2=4 moves



  

Example: Linear Conflict

1 33
1

Manhattan distance is 2+2=4 moves



  

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves



  

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but 
linear conflict adds 2 additional moves.



  

Linear Conflict Heuristic

• Hansson, Mayer, and Yung, 1991

• Given two tiles in their goal row, but 
reversed in position, additional vertical 
moves can be added to Manhattan distance.

• Still not accurate enough to solve 24-Puzzle

• We can generalize this idea further. 



  

More Complex Tile Interactions

3
7
11

12 13 14 15

14 7
3

15 12
11 13

M.d. is 19 moves, but 
31 moves are needed. 

M.d. is 20 moves, but 
28 moves are needed

3
7
11

12 13 14 15

7 13
12

15 3
11 14

M.d. is 17 moves, but 
27 moves are needed

3
7
11

12 13 14 15

12 11
7 14

13 3
15



  

Pattern Database Heuristics

• Culberson and Schaeffer, 1996

• A pattern database is a complete set of such 
positions, with associated number of moves.

• e.g. a 7-tile pattern database for the Fifteen 
Puzzle contains 519 million entries. 



  

Heuristics from Pattern 
Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

31 moves is a lower bound on the total number 
of moves needed to solve this particular state.



  

Precomputing Pattern Databases

• Entire database is computed with one 
backward breadth-first search from goal.

• All non-pattern tiles are indistinguishable, 
but all tile moves are counted.

• The first time each state is encountered, the 
total number of moves made so far is 
stored.

• Once computed, the same table is used for 
all problems with the same goal state.



  

What About the Non-Pattern 
Tiles?

• Given more memory, we can compute 
additional pattern databases from the 
remaining tiles.

• In fact, we can compute multiple pattern 
databases from overlapping sets of tiles.

• The only limit is the amount of memory 
available to store the pattern databases. 



  

Combining Multiple Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles
22 moves need to solve blue tiles



  

Applications of Pattern 
Databases

• On 15 puzzle, IDA* with pattern database 
heuristics is about 10 times faster than with 
Manhattan distance (Culberson and 
Schaeffer, 1996).

• Pattern databases can also be applied to 
Rubik’s Cube.



  

Corner Cubie Pattern Database

This database contains 88 million entries



  

6-Edge Cubie Pattern Database

This database contains 43 million values



  

Remaining 6-Edge Cubie 
Database

This database also contains 43 million values



  

 Rubik’s Cube Heuristic

• All three databases are precomputed in less 
than an hour, and use less than 100 Mbytes.

• During problem solving, for each state, the 
different sets of cubies are used to compute 
indices into their pattern databases.

• The overall heuristic value is the maximum 
of the three different database values.



  

Performance on Rubik’s Cube

• IDA* with this heuristic found the first 
optimal solutions to randomly scrambled 
Rubik’s Cubes  (Korf, 1997).

• Median optimal solution length is 18 moves

• Most problems can be solved in about a day 
now, using larger pattern databases.



  

Related Work

• Culberson and Schaeffer’s 1996 work on 
pattern databases in the Fifteen Puzzle.

• Armand Prieditis’ ABSOLVER program 
discovered a “center-corner” heuristic for 
Rubik’s Cube in 1993.

• Herbert Kociemba independently developed 
 a powerful Rubik’s Cube program in 
1990s.

• Mike Reid has built faster Cube programs.



  

Memory Adds Speed

• More memory can hold larger databases.

• Larger databases provide more accurate 
heuristic values.

• More accurate heuristics speed up search.

• E.g. Doubling the memory almost doubles 
the search speed.

• See (Holte and Hernadvolgyi, 1999, 2000) 
for more details.



  

Limitation of General Databases

• The only way to admissibly combine values 
from multiple general pattern databases is to 
take the maximum of their values.

• For more accuracy, we would like to add  
heuristic values from different databases.

• We can do this on the tile puzzles because 
each move only moves one tile at a time. 

• Joint work with Ariel Felner



  

Additive Pattern Databases

• Culberson and Schaeffer counted all moves 
needed to correctly position the pattern 
tiles.

• In contrast, we count only moves of the 
pattern tiles, ignoring non-pattern moves. 

• If no tile belongs to more than one pattern,  
then we can add their heuristic values.

• Manhattan distance is a special case of this, 
where each pattern contains a single tile.



  

Example Additive Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 15 14

The 7-tile database contains 58 million entries. 
The 8-tile database contains 519 million entries.



  

Computing the Heuristic

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles



  

Performance on 15 Puzzle

• IDA* with a heuristic based on these 
additive pattern databases can optimally 
solve random 15 puzzle instances in less 
than 29 milliseconds on average.

• This is about 1700 times faster than with 
Manhattan distance on the same machine.



  

24 Puzzle Additive Databases

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24



  

Performance on 24 Puzzle

• Each database contains 128 million entries.

• IDA* using these databases can optimally 
solve random 24-puzzle problems.

• Optimal solutions average 100 moves.

• Billions to trillions of nodes generated.

• Over 2 million nodes per second.

• Running times from 18 seconds to 10 days.

• Average is a day and a half.



  

10000000

100000000

1E+09

1E+10

1E+11

1E+12

1E+13

80 85 90 95 100 105 110 115

Optimal Solution Length

N
odes G

enerated



  

Moral of the Story (so far)

• Our implementation of disjoint additive 
pattern databases is tailored to tile puzzles.

• In general, most heuristics assume that 
subproblems are independent.

• Capturing some of the interactions between 
subproblems yields more accurate heuristics

• We’ve also applied this to graph partioning.



  

Time Complexity of Admissible 
Heuristic Search Algorithms

Joint work with Michael Reid (Brown 
University)



  

Previous Work on This Problem

• Pohl 1977, Gaschnig 1979, Pearl 1984

• Assumes an abstract analytic model of the 
problem space

• Characterizes heuristic by its accuracy as an 
estimate of optimal solution cost

• Produces asymptotic results.

• Doesn’t predict runtime on real problems.



  

How Long does a Heuristic 
Search Algorithm take to Run?

• Branching factor of problem space

• Solution depth of problem instance

• Heuristic evaluation function

Depends on:



  

Branching Factor: average 
number of children of a node 

• In tile puzzles, a cell has 2,3,or 4 neighbors.

• Eliminating inverse of last move gives a 
node branching factor of 1, 2, or 3. 

• Exact asymptotic branching factor depends 
on relative frequency of each type of node, 
in limit of large depth.

• Joint work with Stefan Edelkamp



  

One Wrong Way to do it

• 15 puzzle has 4 center cells (b=3), 4 corner 
cells (b=1), and 8 side cells (b=2).

• Therefore, b= (4*3+4*1+8*2)/16=2.

• Assumes all blank positions equally likely



  

The Correct Answer

• The asymptotic branching factor of the 
Fifteen Puzzle is 2.13040

• The derivation is left as an exercise.



  

Derivation of Time Complexity

• First, consider brute-force search.

• Then, consider heuristic search complexity.

• Illustrate result with example search tree.



  

Brute-Force Search Tree

depth nodes

b0

b1

  

1

1 11

0

1

h(n)

g(n)

0 1 2 3 4



  

Brute-Force Search Tree

depth nodes

b0

b1

b2

  

1

1 11

2 3 121

0

1

2

h(n)

g(n)

0 1 2 3 4



  

Brute-Force Search Tree

depth nodes

b0

b1

b2

  b3 

1

1 11

2 3 121

6 7 363

0

1

3

2

h(n)

g(n)

0 1 2 3 4



  

Brute-Force Search Tree

depth nodes

b0

b1

b2

  b3 

b4

1

1 11

2 3 121

6 7 363

16 19 9169

0

1

3

4

2

h(n)

g(n)

0 1 2 3 4



  

Brute-Force Search Tree

depth nodes

b0

b1

b2

  b3 

b4

b5

1

1 11

2 3 121

6 7 363

16 19 9169

44 51 254425

0

1

3

4

5

2

h(n)

g(n)

0 1 2 3 4



  

Brute-Force Search Tree

depth nodes

b0

b1

b2

  b3 

b4

b5

b6

1

1 11

2 3 121

6 7 363

16 19 9169

44 51 254425

120 139 6912069

0

1

3

4

5

6

2

h(n)

g(n)

0 1 2 3 4



  

Heuristic Distribution Function 

• The distribution of heuristic values 
converges, independent of initial state.

• Let P(x) be the proportion of states with 
heuristic value <= x, in limit of large depth. 
 

• For pattern database heuristics, P(x) can be 
computed exactly from the databases.

• For general heuristics, P(x) can be 
approximated by random sampling. 



  

Nodes Expanded by A* or IDA*

• Running time is proportional to number of 
node expansions.

• If C* is the cost of an optimal solution, A* 
or IDA* will expand all nodes n for which 
f(n)=g(n)+h(n)<=C*, in the worst case.



  

Brute-Force Search Tree

depth nodes

b0

b1

b2

  b3 

b4

b5

b6

1

1 11

2 3 121

6 7 363

16 19 9169

44 51 254425

120 139 6912069

0

1

3

4

5

6

2

h(n)

g(n)

0 1 2 3 4



  

depth nodes

b0

b1

b2

  b3 

b4

b5

b6

1

1 11

2 3 121

6 7 363

16 19 9169

44 51 254425

120 139 6912069

0

1

3

4

5

6

2

h(n)

g(n)

0 1 2 3 4

IDA* Iteration with Depth Limit 6



  

IDA* Iteration with Depth Limit 6

depth nodes

b0

b1

b2

  b3 

b4

b5

b6

1

1 11

2 3 121

6 7 363

16 19 6139

44 35 01925

69 44 0069

0

1

3

4

5

6

2

h(n)

g(n)

0 1 2 3 4



  

IDA* Iteration with Depth Limit 6

depth nodes

b0

b1

b2

  b3 

b4

b5

b6

1

1 11

2 3 121

6 7 363

16 19 6139

44 35 1925

69 4469

0

1

3

4

5

6

2

h(n)

g(n)

0 1 2 3 4



  

IDA* Iteration with Depth Limit 6

depth
nodes expanded

1

1 11

2 3 121

6 7 363

16 19 6139

44 35 1925

69 4469

0

1

3

4

5

6

2

h(n)

g(n)

0 1 2 3 4

b0

b1

b2

  b3 P(3) 

b4 P(2)

b5 P(1)

b6 P(0)



  

The Main Result

• b is the branching factor,

• d is the optimal solution depth,

• P(x) is the heuristic distribution function

• The number of nodes expanded by the last 
iteration of IDA* in the worst case is:

Σ
i=0

d
bi P(d-i)b0P(d)+b1P(d-1)+...bdP(0)=



  

Assumptions of the Analysis

• h is consistent, meaning that in any move, h 
never decreases more than g increases.

• The graph is searched as a tree (e.g. IDA*).

• Goal nodes are ignored.

• The distribution of heuristic values at a 
given depth approximates the equilibirum 
heuristic distribution at large depth.

• We don’t assume that costs are uniform. 



  

Experiments on Rubik’s Cube

• Heuristic function is based on corner cubie 
and two edge cubie pattern databases.

• Heuristic distribution is computed exactly 
from databases, assuming database values 
are independent of each other. 

• Theory predicts average node expansions 
by IDA* to within 1%.



  

Experiments on Fifteen Puzzle

• Heuristic is Manhattan distance.

• Heuristic distribution is approximated by10 
billion random samples of problem space.

• Theory predicts average node expansions 
within 2.5% at typical solution depths. 

• Accuracy of theory increases with depth.



  

Experiments on Eight Puzzle

• Heuristic is Manhattan distance.

• Heuristic distribution is computed exactly 
by exhaustive search of entire space.

• Average node expansions by IDA* is 
computed exactly by running every solvable 
initial state as deep as we need to.

• Theory predicts experimental results exactly



  

Practical Importance

• Ability to predict performance of  heuristic 
search from heuristic distribution allows us 
to choose among alternative heuristics.

• More efficient than running large numbers 
of searches in the problem domain

• Can predict performance even if we can’t 
run any problem instances (e.g. Twenty-
Four puzzle with Manhattan distance).



  

Complexity of Heuristic Search

• Complexity of brute-force search is O(bd).

• Previous results predicted O((b-K)d) for 
complexity of heuristic search,  reducing 
the effective branching factor.

• Our theory predicts O(bd-k), reducing the 
effective depth of search by a constant.

• This is confirmed by our experiments.

• k is roughly the expected value of heuristic.



  

Summary

• More powerful admissible heuristics can be 
automatically computed by capturing some 
of the interactions between subproblems.

• The time complexity of heuristic search 
algorithms can be accurately predicted from 
the branching factor, search depth, and 
heuristic distribution function.



  

Conclusions

• Recent progress in this area has come from 
more accurate heuristic functions.

• Admissible heuristics can also be used to 
speed up searches for sub-optimal solutions.

• New methods have emerged for 
constructing such heuristic functions.

• Applying these methods to new problems 
still requires work.


