Recent Progress 1n the Design
and Analysis of Admissible
Heuristic Functions

Richard E. Korf
Computer Science Department

University of California, Los Angeles

Thanks

Victoria Cortessis
Ariel Felner

Rob Holte

Kaoru Mulvihill
Nathan Sturtevant

Heuristics come from
Abstractions

* Admissible (lower bound) heuristic
evaluation functions are often the cost of
exact solutions to abstract problems.

* E.g. If we relax the Fifteen Puzzle to allow
a tile to move to any adjacent position, the
cost of an exact solution to this sismplified
problem 1s Manhattan distance.

Outline of Talk

* New methods for the design of more
accurate heuristic evaluation functions.

* A new method to predict the running time
of admissible heuristic search algorithms

Fifteen Puzzle

Fifteen Puzzle

* Invented by Sam Loyd in 1870s

* “...engaged the attention of nine out of ten
persons of both sexes and of all ages and
conditions of the community.”

* $1000 prize to swap positions of two tiles

Swap Two Tiles

2

3

6

7

10

11

14 18

(Johnson & Storey, 1879) proved it’s impossible.

Twenty-Four Puzzle

Rubik’s Cube

Rubik’s Cube

* Invented in 1974 by Erno Rubik of Hungary
* Over 100 million sold worldwide

* Most famous combinatorial puzzle ever

Finding Optimal Solutions

Input: A random solvable initial state

Output: A shortest sequence of moves that
maps the initial state to the goal state

Generalized sliding-tile puzzle is NP
Complete (Ratner and Warmuth, 1986)

People can’t find optimal solutions.

Progress measured by size of problems that
can be solved optimally.

Sizes of Problem Spaces

Brute-Force Search Time
Problem Nodes (10 million nodes/second)

8 Puzzle: 10° .01 seconds
23 Rubik’s Cube: 10° .2 seconds
15 Puzzle: 1013 6 days

3 Rubik’s Cube: 10" 68,000 years
24 Puzzle: 10%° 12 billion years

A* Algorithm

* Hart, Nilsson, and Raphael, 1968

* Best-first search with cost function
f(n)=g(n)+h(n)
* If 4(n) 1s admissible (a lower bound

estimate of optimal cost), A* guarantees
optimal solutions 1f they exist.

* A* stores all the nodes 1t generates,
exhausting available memory 1n minutes.

[terative-Deepening-A* (IDA™)

IDA* (Korf, 1985) is a linear-space version
of A*, using the same cost function.

Each 1teration searches depth-first for
solutions of a given length.

IDA* 1s sitmpler, and often faster than A*,
due to less overhead per node.

Key to performance 1s accurate heuristic
evaluation function.

Manhattan Distance Heuristic

B 23 123
4

5167 4,56 7
81910111 | 8|9 10 11
1314012 12/13 14|18

Manhattan distance 1s 6+3=9 moves

Performance on 15 Puzzle

Random 15 puzzle instances were first
solved optimally using IDA* with
Manhattan distance heuristic (Korf, 1985).

Optimal solution lengths average 53 moves.
400 million nodes generated on average.

Average solution time 1s about 50 seconds
on current machines.

[.imitation of Manhattan
Distance

To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about
65,000 years on average.

Assumes that each tile moves independently
In fact, tiles interfere with each other.

Accounting for these interactions 1s the key
to more accurate heuristic functions.

Example: Linear Conflict

N H e N

Manhattan distance 1s 2+2=4 moves

Example: Linear Conflict

BE W e

Manhattan distance 1s 2+2=4 moves

Example: Linear Conflict

B

Manhattan distance 1s 2+2=4 moves

Example: Linear Conflict

B

Manhattan distance 1s 2+2=4 moves

Example: Linear Conflict

B

Manhattan distance 1s 2+2=4 moves

Example: Linear Conflict

s W e

Manhattan distance 1s 2+2=4 moves

Example: Linear Conflict

M E TE e

Manhattan distance 1s 2+2=4 moves, but
linear contlict adds 2 additional moves.

[Linear Conflict Heuristic

Hansson, Mayer, and Yung, 1991

Given two tiles in their goal row, but
reversed 1n position, additional vertical
moves can be added to Manhattan distance.

Still not accurate enough to solve 24-Puzzle

We can generalize this 1dea further.

More Complex Tile Interactions

e
d
el

M.d. 1s 19 moves, but
31 moves are needed.

M.d. is 20 moves, but
28 moves are needed

M.d. 1s 17 moves, but
27 moves are needed

Pattern Database Heuristics

* Culberson and Schaefter, 1996

* A pattern database 1s a complete set of such
positions, with associated number of moves.

* ¢.g. a 7/-tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Heuristics from Pattern
Databases

31 moves 1s a lower bound on the total number
of moves needed to solve this particular state.

Precomputing Pattern Databases

Entire database 1s computed with one
backward breadth-first search from goal.

All non-pattern tiles are indistinguishable,
but all tile moves are counted.

The first time each state 1s encountered, the
total number of moves made so far 1s
stored.

Once computed, the same table 1s used for
all problems with the same goal state.

What About the Non-Pattern
Tiles?

* (Given more memory, we can compute
additional pattern databases from the
remaining tiles.

* In fact, we can compute multiple pattern
databases from overlapping sets of tiles.

* The only limit 1s the amount of memory
available to store the pattern databases.

Combining Multiple Databases

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Overall heuristic 1s maximum of 31 moves

Applications of Pattern
Databases

* On 15 puzzle, IDA* with pattern database
heuristics 1s about 10 times faster than with

Manhattan distance (Culberson and
Schaeftfer, 1996).

* Pattern databases can also be applied to
Rubik’s Cube.

Corner Cubie Pattern Database

a—

This database contains 88 million entries

6-Edge Cubie Pattern Database

This database contains 43 million values

Remaining 6-Edge Cubie
Database

%
/

This database also contains 43 million values

Rubik’s Cube Heuristic

* All three databases are precomputed in less
than an hour, and use less than 100 Mbytes.

* During problem solving, for each state, the
different sets of cubies are used to compute
indices 1nto their pattern databases.

* The overall heuristic value 1s the maximum
of the three different database values.

Performance on Rubik’s Cube

 IDA* with this heuristic found the first

optimal solutions to randomly scrambled
Rubik’s Cubes (Korf, 1997).

* Median optimal solution length 1s 18 moves

* Most problems can be solved in about a day
now, using larger pattern databases.

Related Work

Culberson and Schaefter’s 1996 work on
pattern databases 1n the Fifteen Puzzle.

Armand Prieditis’ ABSOLVER program
discovered a “center-corner’ heuristic for
Rubik’s Cube 1n 1993.

Herbert Kociemba independently developed
a powerful Rubik’s Cube program in
1990s.

Mike Reid has built faster Cube programs.

Memory Adds Speed

More memory can hold larger databases.

Larger databases provide more accurate
heuristic values.

More accurate heuristics speed up search.

E.g. Doubling the memory almost doubles
the search speed.

See (Holte and Hernadvolgyi, 1999, 2000)
for more details.

[Limitation of General Databases

The only way to admissibly combine values
from multiple general pattern databases 1s to
take the maximum of their values.

For more accuracy, we would like to add
heuristic values from different databases.

We can do this on the tile puzzles because
each move only moves one tile at a time.

Joint work with Ariel Felner

Additive Pattern Databases

Culberson and Schaeffer counted all moves
needed to correctly position the pattern
tiles.

In contrast, we count only moves of the
pattern tiles, 1gnoring non-pattern moves.

If no tile belongs to more than one pattern,
then we can add their heuristic values.

Manhattan distance 1s a special case of this,
where each pattern contains a single tile.

Example Additive Databases

The 7-tile database contains 58 million entries.
The 8-tile database contains 519 million entries.

Computing the Heuristic

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Overall heuristic 1s sum, or 20+25=45 moves

Performance on 15 Puzzle

* IDA* with a heuristic based on these
additive pattern databases can optimally
solve random 15 puzzle instances in less
than 29 milliseconds on average.

* This 1s about 1700 times faster than with
Manhattan distance on the same machine.

24 Puzzle Additive Databases

Performance on 24 Puzzle

Each database contains 128 million entries.

IDA* using these databases can optimally
solve random 24-puzzle problems.

Optimal solutions average 100 moves.
Billions to trillions of nodes generated.
Over 2 million nodes per second.

Running times from 18 seconds to 10 days.

Average 1s a day and a half.

PAIBISUID) SOPON

1E+13 -

1E+12 -

1E+11

1E+10 -

1E+09 -

100000000 -

10000000
30

85

90 95 100 105 110

Optimal Solution Length

118

Moral of the Story (so far)

Our implementation of disjoint additive
pattern databases is tailored to tile puzzles.

In general, most heuristics assume that
subproblems are independent.

Capturing some of the interactions between
subproblems yields more accurate heuristics

We’ve also applied this to graph partioning.

Time Complexity of Admissible
Heuristic Search Algorithms

Joint work with Michael Reid (Brown
University)

Previous Work on This Problem

Pohl 1977, Gaschnig 1979, Pearl 1984

Assumes an abstract analytic model of the
problem space

Characterizes heuristic by its accuracy as an
estimate of optimal solution cost

Produces asymptotic results.

Doesn’t predict runtime on real problems.

How Long does a Heuristic
Search Algorithm take to Run?

Depends on:

* Branching factor of problem space
* Solution depth of problem instance

* Heuristic evaluation function

Branching Factor: average
number of children of a node

In tile puzzles, a cell has 2,3,or 4 neighbors.

Eliminating inverse of last move gives a
node branching factor of 1, 2, or 3.

Exact asymptotic branching factor depends
on relative frequency of each type of node,
in limit of large depth.

Joint work with Stefan Edelkamp

One Wrong Way to do 1t

* 15 puzzle has 4 center cells (b=3), 4 corner
cells (b=1), and 8 side cells (b=2).

* Therefore, b= (4*3+4*1[+8%2)/16=2.
* Assumes all blank positions equally likely

The Correct Answer

* The asymptotic branching factor of the
Fifteen Puzzle 1s 2.13040

* The derivation 1s left as an exercise.

Derivation of Time Complexity

* First, consider brute-force search.
* Then, consider heuristic search complexity.

* Illustrate result with example search tree.

Brute-Force Search Tree

h(n)
depth O 1.2 3 4 nodes
L0 b
g(n)
| bl

Brute-Force Search Tree

h(n)
depth 0O 1 2 3 4 nodes
[0 b?
g(n) b’
j 2 b’

Brute-Force Search Tree

h(n)
depth O 1.2 3 4 nodes
0 b?
b
b2
3 b’

Brute-Force Search Tree

h(n)
depth 0O 1 2 3 4 nodes
0 b?
b
gn) 2 b?
3 b’
4 b*

g(n)

depth
0

hn B W

Brute-Force Search Tree
h(n)

Brute-Force Search Tree

h(n)
depth O 1 2 3 4 nodes

0 b?

b

2 b’

g(n) 3 b’
4 b*

R b’

6 b®

Heuristic Distribution Function

The distribution of heuristic values
converges, independent of initial state.

Let P(x) be the proportion of states with
heuristic value <= x, in limit of large depth.

For pattern database heuristics, P(x) can be
computed exactly from the databases.

For general heuristics, P(x) can be
approximated by random sampling.

Nodes Expanded by A* or IDA*

* Running time 1s proportional to number of
node expansions.

* If C* 1s the cost of an optimal solution, A*
or IDA* will expand all nodes n for which
f(n)=g(m)+h(n)<=C* 1n the worst case.

Brute-Force Search Tree

h(n)
depth O 1 2 3 4 nodes

0 b?

b

2 b’

g(n) 3 b’
4 b*

R b’

6 b®

IDA* Iteration with Depth Limit 6

h(n)
depth O 1 2 3 4 nodes

0 b?

b

2 b’

g(n) 3 b’
4 b*

R b’

6 b®

IDA* Iteration with Depth Limit 6

h(n)
depth O 1 2 3 4 nodes

0 b?

b

2 b’

g(n) 3 b’
4 b*

R b’

6 b®

IDA* Iteration with Depth Limit 6

h(n)
depth O 1 2 3 4 nodes

0 b?

b

2 b’

g(n) 3 b’
4 b*

R b’

6 b®

IDA* Iteration with Depth Limit 6

h(n)
depth 0 1 2 3 4 nodesexpanded

0 e

N

2 2
gn) 3 b P(3)
4 b*P(2)
> bsP(1)
6 b¢ P(0)

The Main Result

b 1s the branching factor,
d is the optimal solution depth,

P(x) 1s the heuristic distribution function

The number of nodes expanded by the last
iteration of IDA* 1n the worst case 1s:

d
'P(d)+b'P(d-1)+...b'P(0)= D b P(d-i)

l

0

Assumptions of the Analysis

h 1s consistent, meaning that in any move, h
never decreases more than g increases.

The graph 1s searched as a tree (e.g. IDA™).
Goal nodes are ignored.

The distribution of heuristic values at a
given depth approximates the equilibirum
heuristic distribution at large depth.

We don’t assume that costs are uniform.

Experiments on Rubik’s Cube

* Heuristic function 1s based on corner cubie
and two edge cubie pattern databases.

* Heuristic distribution 1s computed exactly
from databases, assuming database values
are independent of each other.

* Theory predicts average node expansions
by IDA* to within 1%.

Experiments on Fifteen Puzzle

Heuristic 1s Manhattan distance.

Heuristic distribution 1s approximated by 10
billion random samples of problem space.

Theory predicts average node expansions
within 2.5% at typical solution depths.

Accuracy of theory increases with depth.

Experiments on Eight Puzzle

Heuristic 1s Manhattan distance.

Heuristic distribution 1s computed exactly
by exhaustive search of entire space.

Average node expansions by IDA* 1s
computed exactly by running every solvable
initial state as deep as we need to.

Theory predicts experimental results exactly

Practical Importance

* Ability to predict performance of heuristic
search from heuristic distribution allows us
to choose among alternative heuristics.

* More efficient than running large numbers
of searches 1n the problem domain

* Can predict performance even 1f we can’t
run any problem instances (e.g. Twenty-
Four puzzle with Manhattan distance).

Complexity of Heuristic Search

Complexity of brute-force search 1s O(bH9).

Previous results predicted O((b-K)¢) for
complexity of heuristic search, reducing
the effective branching factor.

Our theory predicts O(b%*), reducing the
effective depth of search by a constant.

This 1s confirmed by our experiments.

k 1s roughly the expected value of heuristic.

Summary

* More powerful admissible heuristics can be
automatically computed by capturing some
of the interactions between subproblems.

* The time complexity of heuristic search
algorithms can be accurately predicted from
the branching factor, search depth, and
heuristic distribution function.

Conclusions

Recent progress 1n this area has come from
more accurate heuristic functions.

Admissible heuristics can also be used to
speed up searches for sub-optimal solutions.

New methods have emerged for
constructing such heuristic functions.

Applying these methods to new problems
still requires work.

