Informed search algorithms
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Review: Tree search

\input{\file{algorithms}{tree-search-short-
algorithmj}}

A search strategy is defined by picking the
order of node expansion



Best-first search

|dea: use an evaluation function f(n) for each node

— estimate of "desirability"
- Expand most desirable unexpanded node

Implementation:

Order the nodes in fringe in decreasing order of
desirability

Special cases:
— greedy best-first search
— A’ search
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Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

e.g., hg, ,(n) = straight-line distance from n
to Bucharest

Greedy best-first search expands the
node that appears to be closest to goal



Greedy best-first search
example



Greedy best-first search
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Properties of greedy best-first

search
Complete”? No — can get stuck in loops,

e.g., lasi > Neamt - lasi > Neamt -
Time? O(b™), but a good heuristic can give

dramatic improvement

Space? O(b™) -- keeps all nodes in
memory

Optimal? No




A" search

ldea: avoid expanding paths that are
already expensive

Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through
n to goal



A’ search example
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A’ search example



A" search example
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A" search example
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A" search example
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A" search exam

e

Ched

m

EW—ZB’JHEE - l'x_‘ 6?1 2914-3»50

H47=118+329

Sbiu {Euchalaﬁ} {Elabva ¥ C_qu[gﬁ_p Sbiu
591=338+253 450=450+0 526=366+180 | . 553=300+253

D o> @D

418=418+0 G15=455+160 GOT=414+183

CED

e

4489=75+374



Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h’(n), where h’(n) is the true cost to reach
the goal state from n.

An admissible heuristic never overestimates the
cost to reach the goal, i.e., it is optimistic

Example: hg, ,(n) (never overestimates the actual
road distance)

Theorem: If h(n) is admissible, A" using TREE -
SEARCH Is optimal



Optimality of A" (proof)

Suppose some suboptimal goal G, has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that nis on a

shortest path to an optimal goal G.
Start

f(G,) =49(G,) since h(G,) =0
a9(G,) > g(G) since G, is suboptimal
f(G) =9g(G) since h(G) =0

f(G,) > f(G) from above



Optimality of A" (proof)

Suppose some suboptimal goal G, has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that nis on a

shortest path to an optimal goal G.
Start

H(G,)
h(n)

g(n) + h(n)
f(n)

c@
> f(G) from above
< hA*(n) since h is admissible
= g(n) + h'(n)
< f(G)

Hence f(G,) > f(n), and A" will never select G, for expansion



Consistent heuristics

* Aheuristic is consistent if for every node n, every successor n'of n
generated by any action a,

h(n) < c(n,a,n’) + h(n’)
c(n,a,n’)
* If his consistent, we have
f(n) ~ =g(n’) + h(n)
=g(n) + ¢(n,a,n’) + h(n’)
2 g(n) + h(n)
= f(n)
* i.e., f(n) is non-decreasing along any path.
* Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal



Optimality of A’

A" expands nodes in order of increasing f value

Gradually adds "f-contours"” of nodes
Contour i/ has all nodes with f=f, where f. <f_,




Properties of A$"*$

Complete? Yes (unless there are infinitely

many nodes with f < f(G) )
Time? Exponential

Space”? Keeps all nodes in memory

Optimal? Yes




Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
« h,(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

* h(S)="7
* h(S)="7

4

7 2 4
5 6
8 3 1

7

Start State

Goal State




Admissible heuristics

E.g., for the 8-puzzle:
* h,(n) = number of misplaced tiles

« h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1
5 6 3 4
8 3 1 6 7
Start State Goal State
. h(S)=28

o h,(S) = ? 3+1+2+2+2+43+3+2 = 18




Dominance

If h,(n) 2 h,(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of nodes
expanded):

a=12 IDS = 3,644,035 nodes
A'(h,) = 227 nodes

A’(h,) = 73 nodes

d—24 IDS = too many nodes
A'(h,) = 39 135 nodes
)

A'(h,) = 641 nodes



Relaxed problems

A problem with fewer restrictions on the actions
Is called a relaxed problem

The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the original
problem

If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h,(n) gives the

shortest solution

If the rules are relaxed so that a tile can move to
any adjacent square, then h,(n) gives the

shortest solution



Local search algorithms

In many optimization problems, the path to the
goal is irrelevant; the goal state itself is the
solution

State space = set of "complete" configurations

Find configuration satisfying constraints, e.g., n-
queens

In suph cases, we can use local search
algorithms

keep a single "current” state, try to improve it



Example: n-queens

* Put n queens on an n x n board with no
two queens on the same row, column, or

diagonal
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Hill-climbing search

* "Like climbing Everest in thick fog with
amnesia"

function HiLL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor




Hill-climbing search

* Problem: depending on initial state, can
get stuck in local maxima
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Hill-climbing search: 8-queens problem

13.14 13.14
16 15.14.15
14.13 15.14

14 w 16 16
w 17 w 16
W8] 1o (8T W (11 W
18 ‘w 15 ‘ﬂ'
14 17 . 14 . 18

h = number of pairs of queens that are attacking each other, either directly
or indirectly

h = 17 for the above state




Hill-climbing search: 8-queens problem

* Alocal minimum with h=1



Simulated annealing search

* |dea: escape local maxima by allowing some
"bad" moves but gradually decrease their

frequency

function SIMULATED-ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current 4 MAKE-NODE(INITIAL-STATE[problem])

for t+ 1to oo do
T+ schedule[i]
if T'= 0 then return current
next+— a randomly selected successor of current
AE+ VALUE[next] — VALUE[current]
if AFE > 0 then current + next

else current +— next only with probability e® £/T




Properties of simulated
annealing search

* One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1

* Widely used in VLSI layout, airline scheduling,
etc



Local beam search

Keep track of k states rather than just one
Start with k randomly generated states

At each iteration, all the successors of all k
states are generated

If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.



Genetic algorithms

A successor state is generated by combining two parent
states

Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet
(often a string of Os and 1s)

Evaluation function (fitness function). Higher values for
better states.

Produce the next generation of states by selection,
crossover, and mutation
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* Fitness function: number of non-attacking pairs of queens
(min=0, max =8 x 7/2 = 28)
« 24/(24+23+20+11) = 31%
o 23/(24+23+20+11) = 29% etc




Genetic algorithms




