Informed search algorithms

Chapter 4

Material

Chapter 4 Section 1 - 3

Exclude memory-bounded heuristic
search

Outline

Best-first search
Greedy best-first search
A" search

Heuristics

_oca
Hill-c
Simu

search algorithms
Imbing search
ated annealing search

Local beam search
Genetic algorithms

Review: Tree search

\input{\file{algorithms}{tree-search-short-
algorithmj}}

A search strategy is defined by picking the
order of node expansion

Best-first search

|dea: use an evaluation function f(n) for each node

— estimate of "desirability"
- Expand most desirable unexpanded node

Implementation:

Order the nodes in fringe in decreasing order of
desirability

Special cases:
— greedy best-first search
— A’ search

Romania with step costs in km

75

Arad

aad

Rimnicu ¥Wikcea

[] ¥Waslul

—] Hireowa

Efaria

Straight-line distance

i Buchamst
Arad
Buchsa rest
Cralova
Dobrets
Eforie
Fagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadis
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

b

0
L&
42
lal
176

151
194
244
241
134

{{u)
193
153
329

195
a4

Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

e.g., hg, ,(n) = straight-line distance from n
to Bucharest

Greedy best-first search expands the
node that appears to be closest to goal

Greedy best-first search
example

Greedy best-first search
example

Greedy best-first search

example
=

Greedy best-first search

example
-

Properties of greedy best-first

search
Complete”? No — can get stuck in loops,

e.g., lasi > Neamt - lasi > Neamt -
Time? O(b™), but a good heuristic can give

dramatic improvement

Space? O(b™) -- keeps all nodes in
memory

Optimal? No

A" search

ldea: avoid expanding paths that are
already expensive

Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through
n to goal

A’ search example

AGE=0+368

A’ search example

A" search example

e

< Sbiu imisoars

= 447=118+320 449=754374

G46=280+366 4+15=239+176 671=291+380 4+13=220+193

A" search example

ey

r:;' Shiu '_":, imisoars

= 447=118+329 449=754374

G46=280+366 4+15=239+176 671= 2914-3»50

{Glai.wa y £ F;-i.tasﬁ ¥ { ébiu ¥

526=366+160 417=317+100 553=300+253

A" search example

{:__ AIEd d:)

e —— II
i Shlu _}
= H47=118+329 449=T5+374

,

G46=280+366 - l'x_‘ G71= 2914-3»50

Shiu ¢ Euchalaﬁ Y |.aimra. F‘ tasti Shiu
501=338+253 450=450-40 526=366+160 417=317+100 553=300+253

A" search exam

e

Ched

m

EW—ZB’JHEE - l'x_‘ 6?1 2914-3»50

H47=118+329

Sbiu {Euchalaﬁ} {Elabva ¥ C_qu[gﬁ_p Sbiu
591=338+253 450=450+0 526=366+180 | . 553=300+253

D o> @D

418=418+0 G15=455+160 GOT=414+183

CED

e

4489=75+374

Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h’(n), where h’(n) is the true cost to reach
the goal state from n.

An admissible heuristic never overestimates the
cost to reach the goal, i.e., it is optimistic

Example: hg, ,(n) (never overestimates the actual
road distance)

Theorem: If h(n) is admissible, A" using TREE -
SEARCH Is optimal

Optimality of A" (proof)

Suppose some suboptimal goal G, has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that nis on a

shortest path to an optimal goal G.
Start

f(G,) =49(G,) since h(G,) =0
a9(G,) > g(G) since G, is suboptimal
f(G) =9g(G) since h(G) =0

f(G,) > f(G) from above

Optimality of A" (proof)

Suppose some suboptimal goal G, has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that nis on a

shortest path to an optimal goal G.
Start

H(G,)
h(n)

g(n) + h(n)
f(n)

c@
> f(G) from above
< hA*(n) since h is admissible
= g(n) + h'(n)
< f(G)

Hence f(G,) > f(n), and A" will never select G, for expansion

Consistent heuristics

* Aheuristic is consistent if for every node n, every successor n'of n
generated by any action a,

h(n) < c(n,a,n’) + h(n’)
c(n,a,n’)
* If his consistent, we have
f(n) ~ =g(n’) + h(n)
=g(n) + ¢(n,a,n’) + h(n’)
2 g(n) + h(n)
= f(n)
* i.e., f(n) is non-decreasing along any path.
* Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A’

A" expands nodes in order of increasing f value

Gradually adds "f-contours"” of nodes
Contour i/ has all nodes with f=f, where f. <f_,

Properties of A$"*$

Complete? Yes (unless there are infinitely

many nodes with f < f(G))
Time? Exponential

Space”? Keeps all nodes in memory

Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
« h,(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

* h(S)="7
* h(S)="7

4

7 2 4
5 6
8 3 1

7

Start State

Goal State

Admissible heuristics

E.g., for the 8-puzzle:
* h,(n) = number of misplaced tiles

« h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1
5 6 3 4
8 3 1 6 7
Start State Goal State
. h(S)=28

o h,(S) = ? 3+1+2+2+2+43+3+2 = 18

Dominance

If h,(n) 2 h,(n) for all n (both admissible)
then h, dominates h,
h, is better for search

Typical search costs (average number of nodes
expanded):

a=12 IDS = 3,644,035 nodes
A'(h,) = 227 nodes

A’(h,) = 73 nodes

d—24 IDS = too many nodes
A'(h,) = 39 135 nodes
)

A'(h,) = 641 nodes

Relaxed problems

A problem with fewer restrictions on the actions
Is called a relaxed problem

The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the original
problem

If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h,(n) gives the

shortest solution

If the rules are relaxed so that a tile can move to
any adjacent square, then h,(n) gives the

shortest solution

Local search algorithms

In many optimization problems, the path to the
goal is irrelevant; the goal state itself is the
solution

State space = set of "complete" configurations

Find configuration satisfying constraints, e.g., n-
queens

In suph cases, we can use local search
algorithms

keep a single "current” state, try to improve it

Example: n-queens

* Put n queens on an n x n board with no
two queens on the same row, column, or

diagonal

"IN
B e W™
EE) Em)

Hill-climbing search

* "Like climbing Everest in thick fog with
amnesia"

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor

Hill-climbing search

* Problem: depending on initial state, can
get stuck in local maxima

-::I:n_j:cti'.'ifun:tinn

shonlder

N

global maxirmim

—_—

o

local maximmm

"flat" local maximmm

coment
state

m-state space

Hill-climbing search: 8-queens problem

13.14 13.14
16 15.14.15
14.13 15.14

14 w 16 16
w 17 w 16
W8] 1o (8T W (11 W
18 ‘w 15 ‘ﬂ'
14 17 . 14 . 18

h = number of pairs of queens that are attacking each other, either directly
or indirectly

h = 17 for the above state

Hill-climbing search: 8-queens problem

* Alocal minimum with h=1

Simulated annealing search

* |dea: escape local maxima by allowing some
"bad" moves but gradually decrease their

frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current 4 MAKE-NODE(INITIAL-STATE[problem])

for t+ 1to oo do
T+ schedule[i]
if T'= 0 then return current
next+— a randomly selected successor of current
AE+ VALUE[next] — VALUE[current]
if AFE > 0 then current + next

else current +— next only with probability e® £/T

Properties of simulated
annealing search

* One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 1

* Widely used in VLSI layout, airline scheduling,
etc

Local beam search

Keep track of k states rather than just one
Start with k randomly generated states

At each iteration, all the successors of all k
states are generated

If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.

Genetic algorithms

A successor state is generated by combining two parent
states

Start with k randomly generated states (population)

A state is represented as a string over a finite alphabet
(often a string of Os and 1s)

Evaluation function (fitness function). Higher values for
better states.

Produce the next generation of states by selection,
crossover, and mutation

24748552

32752411

24415124

32543213

Genetic algorithms

24 31%

e

la)

Thitial E'-:nj_::u lation

11 14%

ki
Fith=ss Function

32752411

>~

24748552

32752411

>~

24415124

)

Selecticn

32748552

24722411

32752124

3274812

24752411

24415411

idj

Cioss—Ovel

Y

32k z2124

24415417

=]
vl tation

* Fitness function: number of non-attacking pairs of queens
(min=0, max =8 x 7/2 = 28)
« 24/(24+23+20+11) = 31%
o 23/(24+23+20+11) = 29% etc

Genetic algorithms

