TJHSST Computer Systems Techlab 2005-2006

I Opensource Group Development

[image: image1.png]Development of an Object-Oriented Module-based
Extensible Student Intranet Web Application in PHP5

Andrew Deason, Bryan Rau-Jacobs, Eric Harmon, Andrew Smith
2005-2006, Period 1, TJIHSST Computer Systems Techlab

Background
Intranet was the system used by students to sign
up for 8th period activities, look up information

about students, and provide other useful school- —————

related functions. A PHP web application, the
Intranet authenticated students and faculty against
the school's Novell account system. Over the years,
the system has experienced the stress of new
technologies, new students, and software upgrades,
revealing flaws in the system. It is not designed in
an object-oriented approach, and thus it is very
difficult to extend or add new features. Since new
requests for Intranet were building daily, it became
necessary to build a new platform for the system,
which would allow us to fix bugs and develop new
features. This new platform, known as Intranet2, or
'lodine’, implements paradigms in Object-Oriented
programming and collaborative development. The
platform also utilizes the Smarty template system to
separate design from logic.

R - L

-y '~ —
tJIntranet

Plcass type your Leorame anc password te log n to the Irtianat

Usamarrs:

Passwurd

Logn

Application Structure

The majority of Intranet2 is coded in PHP5, a
server-side language primarily used for websites
that also supports an Object-Oriented programming
model. We will also make use of XHTML, CSS,
Javascript, and the Smarty template engine for
displaying information.

Following in the footsteps of other successful
projects that we researched, we decided that a
modular approach would be best. Everything in
lodine is a module. All processing in the application
goes through the 'core' module, which handles URL
argument parsing, the loading of modules, and the
creation of some global objects. Core gives control
of processing to the Display module, which, in turn,
loads all of the Intraboxes, and displays the pane
content that the user requested.

oo IR
cants -

oting booth up - Mark as read

In order to aid collaboration between lodine
developers, we use the 'tiforge' system, powered
by the Trac web application. This allows us to
keep ftrack of various bugs and requested
features, as well as monitoring the progress of
development. We also use the phpDoc system, to
easily document the APl (Application
Programming Interface) for all methods and
classes in the application. The phpDoc system
takes comments in the application code itself and
produces professionally formatted documentation
in various formats. We also use the Mercurial
revision control system to allow for a common
repository of code, and to keep track of which
developer changed what. The great flexibility of
the Mercurial system also allows for developers
to easily run development environments outside
the main production server, making it easier to
test the application without affecting users.

de> o

tjforge

T T
Custom Query

Treine 7 Readmar [souesous

sddfter

ssssss

ssssss

nnnnn

nnnnnnnnnn

[image: image2.png]3D Space Game

By Ravi Kappiyoor

Abstract:
The purpose of this project is to make a game that
simulates a war fought in outer space. This project
has two purposes: one, for the 5 of us to learn how
to coordinate as a group on a long term project,
and two, for us to figure out how each of our
respective parts of the game work.

TJHSST Computer Systems Lab 2005-2006

Goal:

The goal of this project is to take several working
components of a game and to turn it into an actual,
working, game. This project is good for the
Computer Systems Lab because it involves
working with other people and trying to get code
working. People that would be interested in the
results would be the people that happen to come
across it on the Intemet. The results can be
applied by playing the game.

Expected Results:

One of our expected results is, obviously, to have
a working game at the end of the year. We also
expect to be able to put the game on the Internet,
and to allow people to play our game for free.

II Distributed and Grid Architectures

Title: Building a Distributed Server

Student: Alberto Pareja-Lecaros

[image: image3.png]The Creation of an Xgrid Controller in Java

Sean Colyer
2005-2006
TJHSST Computer Systems Laboratory
Period 1

Abstract

The creation of an Xgrid Controller in Java has a number of K d

components ranging different branches of computer science. Backgroun . .

Xgrid is a distributed computer system created by Apple for use Apple has recently left the the PowerPC processor architecture it has

with it's Mac OS X. An agent for non Mac computers has been using for several years. It now uses Intel chips using the same

already been created, but no one has created a Controller. The architecture that Windows and Linux have been using for years (x86).

role of the Controller will be to be the central computer in a With the announcement came the realization that it is not as difficult as

distributed network. Ideally once this project is complete it will be ithad been thought to convert PowerPC instructions into x86

easy for any network to be quickly turned into a distributed instructions. With this new realization someone began to work on

network integrating Mac, Windows, and Linux computers. creating an Xgrid Agent for Java which has a number of advantages:
Java runs on most operating systems without changes, Xgrid is an

Current Output:

established network which can easily be adapted to, and it is relatively
simple. With this advancement the ability for many computers to

_ become clients or agents is possible, but the ability to create a
Available Processors: 1 Controller and utilize Mac, Windows, and Linux computers leaves a
Total Memory for VM: 2031616 void. My project will fill this void, to do this | will experiment with
Initializing StartChannelListener distributed computing, processor management, network interfacing,

Session established and any other obstacles in my way.
Initializing StartChannelistener

StartChannelListener successfully intialized

Server is Listening

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist
version="1.0"><dict><key>identifier</key><string></string><key>name</key><string>agentRegistration</string><key
>payload</key><dict><key>addresses</key><array><string>fe80:0:0:0:211:85ff:fele:b84d%2</string></array><key>hos
tnames</key><array><string>tess.local.</string></array><key>agentCookie</key><string></string><key>agentName</k
ey><string>me</string><key>maximumCPUPower</key><string>2500</string><key>maximumTaskCount</key><string>1</stri
ng></dict><key>type</key><string>request</string></dict></plist>

type of message: request name: agentRegistration payloadDict: [dict: null]

Agent Registration: me Running at: 2500Mhz

Message status: 2

Answer number: -1

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist
version="1.0"><dict><key>identifier</key><string>123</string><key>name</key><string>taskSubmission</string><key
>payload</key><dict><key>arguments</key><array><string>hello!!</string></array><key>command</key><string>/bin/e
cho</string></dict><key>type</key><string>request</string></dict></plist>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist
version="1.0"><dict><key>identifier</key><string>123</string><key>name</key><string>taskSubmission</string><key
>payload</key><dict><key>taskRef</key><string>0</string></dict><key>type</key><string>reply</string></dict></pl
ist>

type of message: reply name: taskSubmission payloadDict: [dict: null]

Agent Replied.

Starting the server on a Linux computer

Analysis and Conclusions

At this stage the Controller is listening for incoming connections, establishing the connections, and starting to communicate with them. The output
is somewhat confusing to the untrained eye but in reality it is not that complex. The hardest part to understand is the XML messages which Xgrid
uses for it's messaging. XML uses tags to encode messages in a way similar to HTML, these are interpreted using a SAX XML parser in Java.
XML and BEEPcore were used in Java to create this implementation. BEEPcore is the method Xgrid uses for creating the network interface, so
by using XML and BEEPcore the program can blend into networks because those are tools used by Apple in the creation of Xgrid. Just under the
surface of the output is the management procedure of agents. The controller utilizes a HashMap of agents to contain Agents (which is based on
he variables needed to keep track of an agent: channel of communication, address, name, processor power, busy status) and then referenced
hrough the HashMap as messages are either received or sent. Using a synchronized receiveMSG class, the Xgrid controller will listen for
incoming messages and not act until; this happens, this crucially helps the role of controller which depends on all the agents to help and works
based on their feedback.

n the next stages of my project | will have to take this current implementation and extend it to encode processes into the Base64 strings used in
Xgrid for sending processes to clients. Most of this should be done ahead of time by agents who are sending in requests to the controller which
he controller will then redistribute. | will also need the controller to keep track of tasks that are having problems, such as disconnected agents. In
he future the controller will redistribute more tasks.

Once the project is complete | will have to figure out the best way to create a simple installation that runs without user involvement and
ransparent to the user. The widespread availability and use of Java should make this relatively easy to implement in a wide range of
environments. If this is successfully completed, the project could be used in widespread settings and the average times could be widely
increased. Desktop PC's have enormous untapped potential. There are many situations where computers sit idle when they could be better
suited to be contributing to a common good. In recent years clusters and distributed computing have made great strides, clusters now make a
substantial portion of the top 500 supercomputers in the world.

III Physics Modeling

[image: image4.png]A Discrete-Space Physical Simulation
Abstract Adam Herbst
A general simulation of macroscopic Computer Systems Lab 2006, Period 1
physical bodies calculable in real-time is a
vital tool for game developers, physical
theoreticians and other researchers
Such a simulation generally relies on
division of objects into basic elements,
usually particles of some kind. This
project focuses on the use of discrete-
Space rather than discrete-matter or
particle representation, as well as the
relative utility of these two methods.

The Discrete-Space Method

In this discrete-space simulation, space is
uniformly discretized in all dimensions
This results in elementary cells with
individual attributes (mass contained in
the cell, average velocity of this mass,
average position of matter within the cell, A radius-10 voxefated sphere
coefficient offriction with adjacent cells).

Large-scale objects are stored as

contiguous groups of these cells.

During each time step of the A Sample Time-Step:
simulation, mass is transferred between
cells according to their properties; rmass mass: 10 o existing
and velocity are recalculated to account position: (4, 3) voxel at (5, 3)
for momentum changes. All empty cells velocity: (05, 0)

are discarded after the completion of an
evolution step, and new cells are created
when mass moves outside of an object's —0
existing bounds,

Dilernrmas in Programiming
Storing the cells that make up = given

object is problermatic, since this group is mass: 0.5 mass: 0.5
dynarmic and has no clear spatial order position: (4, 3) position: (5, 3)
(assurring a multi-dimensional velocity: (05, 0) velodiy: (0

simulation). Currently, the program uses
& C++ vector, which is built so asto allow
dynamic array alteration, Though easily t=1
caded, however, this is clearly an
inefficient container. Removing cells is at
worst an O(n) operation, and in adding
cell the entire list must be searched for a
new cell's neighbors. Alinked list with
sorme sort of spatial order might be a
better alternative

[image: image5.png]Development of a Physics Engine

Timmy Loffredo

TJHSST Computer Systems Lab 2005-2006

Abstract

Accurate and fast physics simulation is becoming
increasingly standard in the gaming industry. A good
physics engine can earn big accolades for a game, while a
sub par physics engine can significantly bring down the
overall immersive experience of a game. The goal of this
project is to create a working physics engine independent 3
of any game it might run on. A rudimentary implementation r
of 3D graphics using LWJGL, an OpenGL port for Java, is -
also part of the project for visual

demonstrations.

The simulator's scope encapsulates a section of
Newtonian physics called rigid body dynamics. In this
system, objects cannot bend, break, or deform in any way.
Any number of arbitrary 3D polygonal solid can be defined
in the simulator, as well as spheres, point masses, and
plane surfaces. All such objects are subject to Newton's
three laws of physics. Gravity and air friction can be
activated, if the user decides to do so. Arbitrary and
capricious test forces are allowable. The objects interact
with each other through collisions. The project also has an
implementation of springs, which can be attached either to

objects or free space.

This screen shot was taken from the
program simulating a pool game.
The user can hit the cue ball
whenever the other balls are resting.
Collisions are detected between a
sphere and another sphere by
checking the distance between the
spheres against the sum of their
radii. Collisions against a surface
are detected using a planar equation
that tells which side of a plane a

point is on.

g/ LS postea2

Postion 1

Rotation and orientation in three
dimensions is tricky. There are
several ways that they can be
represented in modern physics
engines. This project uses 3x3
matrices. This matrix, ~when
multiplied by the 3x1 position vector,
gives you the rotated position
vector.

zon

A iy
gt g+ () B

testing and

As we all know from physics, velocity is the integral
of acceleration over time and position is the integral
of velocity over time. When working with arbitrary
forces, however, analytic integrals are impossible.
Instead, an approximation for integrals must be
made, using what is called a numerical integrator.
One such integrator is called the Euler method,
where the function is assumed to stay constant over
some delta t, and is recalculated afterward for the
next delta t. This method introduces lots of error,
therefore, | used the leapfrog method. It is basically
the same, except it uses the midpoint of the function
as its approximation instead of the left or right
endpoint.

Results

Designing the program with arbitrary forces in mind from the beginning
paid off. Rotational kinematics, which | thought was going to be a very difficult
subject, ended up performing flawlessly and adding lots of realism.

Springs have been surprisingly useful and impressive for simulation.
Springs can make simulations more fun and interactive, and make interesting
patterns when combined in some kind of structure. A network of point masses
connected with springs, for example, simulates cloth very well. | never expected
to be able to simulate cloth, but in the end, it was a fairly easy thing to do.

Collisions are more problematic. Implementing collisions can be split into
two tasks: collision detection, deciding when a collision has taken place; and
collision response, changing the object's position/velocity/acceleration when
they do collide. My current collision detector works well for spheres, but only
intermittently for other solids depending on how the solids collide. Collision
response also has problems. Objects often bounce off in the wrong direction if
the colliding objects start off with angular momentum.

This project was a learning experience and a success. Trying to create my
own physics engine gave me a good idea of the depth of computer physics. It
also gave me the background research | need to pursue my interests in other
areas of physics, like deformable bodies and joints. | am proud of the crowning
achievement of this project, a playable pool game. In the end, | am glad | did
the project, and would encourage future tech lab students to consider creating a
physics engine for their project.

This screen shot was taken from a
prototype of the program simulating
a network of point masses with
springs attached between
orthogonal and diagonal neighbors.
The only thing being drawn are the
springs themselves. The network
acts much like some kind of cloth —
a napkin or something similar. The
more point masses and the higher
the density of point masses, then
the more accurate it looks.

[image: image6.png]The Solar System: A Graphical Model

Christina Powell, TIHSST Computer Systems Lab 2005-2006

Abstract

Earth is just a single planet in a large, complex system. Since the 1600s, we as a race
have sought to expand our understanding of this system. How many planets are there?
How is each planet different from ours, and why do these differences exist. Since the
advent of space travel, research has expanded, until we know a great deal about our
solar system. Yet, at the same time that our knowledge is actively expanding, the lack
of viable models prevents much of this knowledge from being shared with any but the

most interested.

Introduction

Studics have shown that even at the college
lovel. students have minimal accuratc
knowledge about the solar system. 1t is vital
that this problem be corrected at an carly level
by teaching clementary school children about
our solar system. As the current mechanical
models of the solar system are obsolete, |
proposc to create a model of the solar system
using the technology of computer graphics in
order to teach students the fundamentals of their
solar system. This model will be more or less to
scale, and will assist in teaching children the
basics they should know about space.

Results
When complete, the model will be a
dynamic and cducational

representation of the solar system. It
will consist of all nine plancts orbiting
the Sun in a relatively physically
accurate manner. It will contain the
options of looking at the solar system
from space or “riding” a planct.
Students will also be able to view the
plancts up close to study their
‘ecography and topographical texture.
They will know the order of the
plancts in the solar system and will be
able to obtain information about cach
planct's composition. size. moons, and
atmosphere simply by clicking on it.
Most importantly, they will be able to
compare the revolution periods,
inclinations. and cccentricities of the
planct's firsthand as they watch the
plancts orbiting the Sun.

< Mercury, Venus,
and Earth orbiting the
Sun.

[image: image7.png]TimeStretch Prototype

Play Stop

One of my prototypes

The Algorithm

I'call’it “Frequency Signature
Identification and Progressive
Disintegration”

Most current timestretching algorithms
work best on monophonic material —
as such, | decided that the main focus
of my research would be to separate
individual frequency elements from
each other. To do this, | decided |
would build “frequency signatures” by
going to transients (i.e. hits, notes)
and identifying the frequencies which
appear or change at these locations.

After an initial pass-through to build
initial signatures, the second pass
transfers all of the appropriate signals
to the signatures of best fit. In the
third pass, what's left (which should be
any signals that enter gradually and
without transients) is divided similarly
into frequency signatures, and the
fourth pass separates these.

After all (or most) of the amplitude of
the signal is transferred into individual
frequency signature audio samples, a
comparatively simple interpolation in
the frequency domain can be applied
to each harmonic/harmonic group of
each frequency signature, and the
audio can then be summed back
together

the frequencies nighlighted in red are new at
the transients, and constitute a frequency
signature - the frequencies of this signature
are remov ed, in accordance with its varying
amplitudes and shifting frtquﬁln

es
| I 11 L | ITlu\\li“lqlI | 14

0.0000000
/afs/csl.tjhsst.edu/user/alederer/WAVfile.wav

foe

The Project

Audio Timestretching

The objective of the project is to lengthen a selection of digital audio, so that it is slower, but so that it
also maintains the subjective properties of the un-processed audio and contains a minimum of defects.

The Progress

Comp-sys Techlab Tips!

The going was tough, initially.

| decided to use an audio/graphical
interface library called JUCE, because
it's cross-platform, but is a library for
C++, so can perform faster real-time
calculation than Java. You probably
haven't heard of it — that's because it's
pretty underground and rather new (in
fact, extremely new to the Linux). The
debugging process was difficult — there
were perplexing compiler errors in the
actual library code, which | found very
surprising.

Coding was rather smooth after | got
the library compiled and the demo
project linked and compiled correctly
(this took, | believe, just the 15t quarter
and a little bit of the 2"). | created
several demo projects and prototypes,
each time exploring a different
segment of the JUCE API and
protocol. There were the phantom
segmentation faults and the confusing
hours of reading the documentation,
but not anything | couldn't handle. A
big snag-up came when | tried to
implement audio, involving a confusing
mix-up with documentation and library
versioning and multiple attempts to
create a simple audio player.

Then time was up for the project, at
least until late in 4t quarter — what
you're reading right now is part of a
long process of content creation and
paperwork that currently precludes the
necessity to get farther with the
project. | hope this information will
give you a good sense of the techlab
timeframe!

1

Many of you reading this poster will be
endeavoring to complete a comp-sys techlab
project of your own some time in the future.
Here are some tips that some of you may find
useful (and some may not):

- Use Java

Why use Java? Why, for a number of good
reasons! Putting aside all actual language
preferences or capabilities, Java will make life
easier for you in a number of ways:

1. It's largely self-contained. That means that,
for most purposes, you won't have to scout out,
research, download, compile, install, learn to
use, debug or beta-test any external libraries or
API's — and those activities can bog up roughly
100% of your time.

2. You're working in the system provided by the
computer systems lab, not in the comfort of your
home system — you don't have much control
over anything, and you don't have much
processor power to work with. Java and all its
fixings are already set up for you here, and you
won't have to worry about finding an IDE or
messing with the settings — and if something in
Java breaks, dozens of people will notice and
complain. If you use C++ and want a good IDE,
or don't want to have to wait for the sys-admins
to come and fix things that you don't have
access to, you're going to have to have a rather
good grasp of Linux to be able to install and
maintain everything you need in your home
directory.

3. Chances are, there will be people in your
class who are much, much, much better and
more experienced coders than you are.
Chances are, they know Java, and are willing to
help you — and you don't want to be stuck trying
to explain the intricacies of this or that obscure
library to someone before you can get the help
you need.

- Keep Track

The most important thing is that you have lots
and lots of words written down to document
whatever's happening — if you're not doing
anything particularly important or interesting,
then it's still your duty to fill up the page with
boring and unimpressive information, in order to
keep Mr. Latimer informed so that he can
determine your grade.

Adam Lederer — Comp Sys Techlab 2006

IV Audio software

[image: image8.png]3D Physics Simulation

Computer Systems Lab : 2005-2006
Steven Durant

o

Conclusions and Future Plans

The simulation is close to being physically
accurate, but in order to test any real situations
it is necessary that the collision detection be
perfectly accurate. This involves constantly
finding the next collision to occur chronologically,
calculating how long until the collision, and then
moving the spheres properly before and after the
collision. Once this is working accurately the
simulation can be used to observe interactions
involving large amounts of particles.

My physics simulation is correct for orbiting
particles and I am working on a method to
randomize particles such that they are all
orbiting a significantly more massive central
particle. Repeated testing shows that the method
to randomize a system including orbiting
particles works approximately 20% of the time.

Abstract

The creation of any physics simulation is
applying the laws of physics into a virtual
environment on a computer. All physical laws
are taken into account for the interactions
between the various particles and results can
be seen on screen. My simulation takes into
account gravity, elastic collisions and
conservation of momentum among other
things. These physical rules result in a visual
display via OpenGL. Various cases can be
programmed in and then the particles can be
observed as they interact with one another.

Method

The movement of the particles is calculated
from basic physical equations. Equation (1)
was used to calculate the force between each
pair of objects. Acceleration was then
calculated using equation (2).

Velocity and position were calculated using
Euler's method (3) (4). These values were all
calculated in magnitude and then applied to
the particles by being multiplied by a unit
vector along the path of the force. Collisions
were detected by calculating the distance
between two particles and then checking to
see if the distance is less than the sum of the

radii. New velocities were given using
conservation of momentum (5).
LIF=G*M *M,/r2]

2.[a=F/M

3.[V' =V, +a*At]

4. [P =P +V*At]

5.[V, =V, *M /M1

Particle Structure p o

‘ float »l

X Y z
Velocity
4 float - x Y z
\ float Acceleration
- X Y z
Y float

> Mass & Radius

