
The Design and Implementation of a Modern Lisp

Dialect

Sam Davis

Nicholas Alexander

January 26, 2006

Abstract

Lisp, invented in 1958 by John McCarthy, revolutionized how programs could be

written and expressed. Instead of giving explicit instructions to a computer, Lisp

expressed programs as logical operations and functions. Lisp was the first language

to incorporate modern language features including: garbage collection, conditionals,

first class functions, and recursion. Also, in 1994 Common Lisp became the first

language to use object oriented programming. However the emergence of the popular

C model of programming has shifted the perception of what level of detail (high or

low) a programming language ought to focus on. Today programming languages are

meant to interact with the operating system at an intimate level and communicate with

other language environments. Common Lisp, which focuses on higher level details, has

become, accordingly, outdated and considered ineffective. However, the Lisp model of

1



programming still arguably remains the most effective for creative applications. Lisp

has a greater ability to abstract and works at a higher level than C code. Therefore

a fundamental difference arises in the style of program development between the two

languages. This paper will attempt to explain the benefits of programming from the

Lisp side.

1 Introduction

1.1 Purpose

Brian Harvey writes in his essay Symbolic Programming vs. the A.P. Curriculum that today

the primary focus on programming is the software engineering approach. That is, pro-

grams are taught and expected to start ”with the broad ideas...and fill in the details later”

(Harvey). However, software engineers tend to ”focus on low-level details [such as] explicit

storage allocation... strong typing...[and] hardwired control structures”(Harvey). Further-

more ”the transition from C (a hacker’s language) to C++ (a software engineer’s language)

has brought more attention, not less, to...low-level details.” Therefore, this project intends

to update Lisp’s abstraction and higher level approach to match the popularity of C++’s

low-level detail-oriented coding. Harvey notes the proposed abstract approach ”can focus

on ... issues [such as] functional programming, object-oriented programming, and logic pro-

gramming methodologies, data abstraction, and higher levels of abstract such as the design

and implementation of a programming language” (Harvey). Sigma Lisp therefore intends

to give competent programmers with ”artistic” intent the tools to make new and creative

2



developments. Indeed, Harvey notes ”a Lisp procedure written in terms of subprocedures

that may not yet be defined provides the right level of abstraction, while retaining techni-

cal rigor” and therefore is the ideal tool to promote creative programming. Naturally, this

project is not meant to rival the C model of programming (which should be used where

lives are threatened, as Harvey states) but instead provide an alternative toolbox for the

programmer who desires to create something revolutionary and no less important but far

less risky. Our contention is, when lives are not involved, low-level errors are an acceptable

trade-off for high-level abstraction capability.

1.2 Scope of Study

An interpreter, not compiler, that can accept explicit prompts or file inputs and execute

them.

2 Background and Review of Literature

Instrumental to the concept of this project were Paul Graham’s essays on effective language

design and McCarthy’s original paper on Lisp. One of the guiding philosophies for Sigma Lisp

is borrowed directly from Graham: ”...almost anything you can do to make programs shorter

is good. There should be lots of library functions; anything that can be implicit should be;

the syntax should be terse to a fault; even the names of things should be short”(Graham, Five

Questions About Language Design). Essentially we hope to create a programming language

designed for hackers (elite programmers) with a high level of abstraction, something Graham

3



highly praises.

2.0.1 Modern Lisp

Today, most Lisp programming in done in Common Lisp, which was initially defined in Guy

Steele’s book Common Lisp: the Language in 1984 and standardized by ANSI in 1994 in

an attempt to create a single, dominant Lisp. Another popular dialect is Scheme, invented

in the 1970’s, which has also enjoyed use for teaching and academic study due to its small,

clean core. Both dialects, however have flaws. Common Lisp is criticized for being overly

large and more difficult to learn. Scheme, by contrast, has such a small definition that it can

be difficult to actually work in, and its hygienic macro system, designed to avoid unwanted

variable capture, make it extremely difficult to perform intentional variable capture. When

both dialects were conceived, languages were supposed to be OS-neutral, so many tasks that

require talking to the OS can only be done using obscure, implementation-specific techniques.

2.1 Literature

2.1.1 Background of Lisp

McCarthy’s paper, however, is used more to gain an understanding of the fundamental Lisp

language and theory, a concept which won’t be explained in too much detail here. However,

since we plan upgrade Lisp and maintain most of the original concepts proposed by McCarthy

the paper was fundamental in enhancing our understanding of what Lisp means. Lisp is based

on S-expressions, symbolic expressions translatable by machine into significant data. More

4



specifically, S-expressions are derived by extending lambda calculus by adding conditions as

a way to express code as a list. Essentially the concept of applying calculus and algebra to

a computer language. In fact, McCarthy became interested in Lisp primarily as a means for

writing computer derivation software.

3 The Sigma Lisp Language

3.1 Design Philosophy

The design of the Sigma Lisp language is guided by six basic principles.

Assume a sufficiently smart programmer

Sigma Lisp is designed for very smart programmers, or at least programmers who know what

they’re doing. Most languages, especially mainstream ones such as Java, have protections

built in to prevent mediocre programmers from doing too much damage. For an intelligent

programmer, however, this can be very restrictive. Sigma is designed to be as free-form as

possible, and to trust the programmer if he fools around with the interior workings.

Expressive enough to use and redefine itself

Virtually all of Sigma, including many operations normally thought of as ”native”, such as

quote, and be expressed in pure Sigma. This means that the language can be reformed to

fit its user’s habits and style, virtually without limit.

5



The programmer’s time is more important than the computer’s

Today’s more powerful machines mean that there is a real difference between ”as fast as

possible” and ”fast enough”, and there is room to trade efficiency for simplicity. It is point-

less to optimize an operation if it won’t make a noticeable difference, while wasting the

programmer’s time.

Language, then implementation

Sigma is not defined by this interpreter, or any eventual compiler. Sigma is, foremost, a

language to express programs. At this point, I cannot worry about how something can be

compiled, as long as it’s possible and truly helps the programmer.

I can’t do everything myself

Sigma cannot stand as an island, but needs to be able to interact with a variety of pro-

gramming environments. Sigma needs to be easily extensible, in as many ways as possible.

Furthermore, Sigma needs to be able to work with as many programming paradigms as

possible.

Nothing is sacred

This is a new start, and any concepts from other languages, including other Lisps, will be

examined solely on their merits. Everything about Lisp will be questioned to see if it really

helps programmers.

6



3.2 Major Differences from Common Lisp

3.3 Types

Nil

Nil serves as Sigma’s nulltype. It is also used to indicate the end of a linked list.

Symbol

S-expressions use symbols to represent variable names. In addition, they are also commonly

used in place of enumerated values. All symbols are stored in a registry, and the string

representation of a symbol is unique among symbols. This allows for O(1) equality testing

and the creation of a correct gensym function.

Cons

Cons cells are binary structures that store two values: car and cdr. A cons cell often

represents a linked list where car stores the first element and cdr stores the remainder of

the list, or nil if the cons stores the last element.

Number

Sigma uses a unified number type that can store a number as a native int, a native float, an

arbitrary precision integer or a rational number.

7



String

Strings in Sigma are composed of four byte wide characters that store Unicode values.

Array

Sigma arrays are dynamically resizable, and are designed to be almost completely inter-

changeable with linked lists. In addition to using an identical interface, arrays can share

their native data array with their subsections, which enables arrays to emulate some of the

behavior of linked lists, as well as allowing subsections to be found in O(1) time.

Hash

A hash is a structure that maps strings or symbols to a value. These hashes draw no

distinction between a string and a symbol with the same string representation.

Function

Functions have been first class objects in Lisp since it was originally defined, which allows

for a range of operations whose flexibility could at best be clumsily simulated otherwise.

Macro

In Sigma, macros are first class objects as functions are. Their interface is identical to that of

functions, and can be declared to return a value rather than an expression that is evaluated

in its place.

8



Method

A method is a function or macro that has been called by an instance, allowing variables from

the caller to be modified easily.

Class

A class definition for Sigma’s object system, these classes support multiple inheritance.

Instance

An instance of a class, instances can have methods defined that allow it to emulate objects

of other types, such as lists or hashes.

Error

The error type is a general name for a range of objects that include exceptions, signals, and

native signals as well as errors. Errors can either be inactive, when they can be manipulated

normally, or active, in which case they interrupt evaluation and force it to return the error,

causing the error to propagate upward until a try block or the toplevel is encountered.

4 Program Structure

4.1 Design Principles

The Sigma interpreter is a large, complex program that requires many different components

to operate together perfectly. In addition, its implementation language, C, is an unforgiving

9



language. As such, the program has been designed as much as possible to be easily tested

and verified.

4.1.1 Functional Programming

In functional programming, functions are used primarily for their return values, and are

expected to work using their specified parameters, without needing to check elements of

program state such as global variables. In addition, functions ideally cause no side-effects.

The advantage of this approach is that functions can be tested individually, working solely

off of their arguments without needing to make a test suite to emulate a complete program

state.

4.1.2 Bottom-up Design

Bottom-up Design emphasizes the building of tools by linking together smaller tools, ensuring

that low-level data manipulation is not being performed except in controlled ways.

4.1.3 Synergy

Functional Programming and Bottom-up Design, when used together, allow code to be

written easily, the completed code to be easier to understand, and for program components

to be easily tested and verified.

10



4.2 Program Components

4.2.1 Basic Data Structures

The foundation of the Sigma interpreter is formed by basic structures for manipulating and

storing data. Each structure, in addition to its basic definition, is accompanied by a series

of functions that serve to carefully control interactions with the structures.

Hash A structure which maps Sigma strings to values.

Array A dynamically resizable array. Can share its data array with subsections, as to

emulate linked lists.

Long An arbitrary precision integer.

Real A rational number formed using two Longs.

Registry Maps keys to the number of times they have been registered. Used to keep track

of the usage of various data structures, such as symbols.

4.2.2 Sigma Data Structures

A number of data structures are built on top of the basic structures and are specific to Sigma.

Object Represents a Sigma data object, such as a number, string, or list.

Func A structure containing the definition of a function or macro.

Scope Represents an environment mapping variables to values.

11



Num A structure to allow a single interface for interactions between various types of num-

bers.

4.2.3 Parser

The function parse() takes a native string as input and returns an Object representing the

inputted S-expression.

4.2.4 Scope

Interactions with Scopes are controlled by a number of functions for creating branching,

deleting, and storing values in variable environments as represented by Scopes.

4.2.5 Eval

The function eval() and the accompanying function apply() form the heart of the Sigma

interpreter. The eval() function takes an Object as returned from parse() and a Scope

representing the calling environment and evaluates the Object as an expression, performing

any side effects, and returns the result.

4.2.6 Libraries

In order to do anything useful, a number of native functions will be needed to define basic

functions such as car and control structures such as while. Many other functions and

macros, such as list, will be defined in Sigma instead of native C.

12



4.2.7 Memory Management

Sigma uses a hybrid reference-counting and garbage collection system to manage memory.

By keeping track of how references are being made to an Object, the interpreter can safely

delete it when there are no references to it. The garbage collector is primarily a back-up

system for handling circular references, as reference counting is generally faster, easier to use

and far more predictable.

4.2.8 Interpreter

Once all the components are complete, a method for initializing them, linking the native

and defined libraries into the toplevel, and an interface for the system will complete the

interpreter.

13


