
Page 213

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Chapter 9 Sorting Algorithms

- rearranging a list of numbers into increasing (strictly non-decreasing) order.

Potential Speedup

Ο(nlogn) is optimal for any sequential sorting algorithm without using special

properties of the numbers.

Best we can expect based upon a sequential sorting algorithm but using n processors is

Has been obtained by Leighton (1984) based upon an algorithm by Ajtai, Komlós, and

Szemerédi (1983), but the constant hidden in the order notation is extremely large. Also

an algorithm for an n-processor hypercube using random operations.

But, in general, a realistic Ο(logn) algorithm with n processors is a goal that will not be

easy to achieve. It may be that the number of processors will be greater than n.

Optimal parallel time complexity
O(n n)log

n
------------------------ O(n)log= =

Page 214

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Rank Sort

The number of numbers that are smaller than each selected number is counted.

This count provides the position of selected number in sorted list; that is, its “rank.”

First a[0] is read and compared with each of the other numbers, a[1] … a[n-1],

recording the number of numbers less than a[0].Suppose this number is x. This is the

index of the location in the final sorted list.

The number a[0] is copied into the final sorted list b[0] … b[n-1], at location b[x].

Actions repeated with the other numbers.

Overall sequential sorting time complexity of Ο(n2) (not exactly a good sequential

sorting algorithm!).

Sequential Code

for (i = 0; i < n; i++) { /* for each number */
x = 0;
for (j = 0; j < n; j++) /* count number of nos less than it */
if (a[i] > a[j]) x++;

b[x] = a[i];/* copy number into correct place */
}

This code will fail if duplicates exist in the sequence of numbers.

Page 215

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Parallel Code
Using n Processors

One processor allocated to one of the numbers Processor finds the final index of one

numbers in Ο(n) steps. With all processors operating in parallel, the parallel time

complexity Ο(n).

In forall notation, the code would look like

forall (i = 0; i < n; i++) {/* for each number in parallel*/
x = 0;
for (j = 0; j < n; j++) /* count number of nos less than it */
if (a[i] > a[j]) x++;

b[x] = a[i]; /* copy number into correct place */
}

Parallel time complexity, Ο(n), is better than any sequential sorting algorithm.

We can do even better if we have more processors.

a[i] a[0] a[i] a[n-1]

Increment
counter, x

b[x] = a[i]
Figure 9.1 Finding
the rank in parallel.

Compare

Using n2 Processors

Comparing one number the other numbers in list performed using multiple processors:

n − 1 processors are used to find the rank of one number. With n numbers, (n − 1)n

processors or (almost) n2 processors needed. Incrementing the counter is done
sequentially and requires a maximum of n steps. Total number of steps is by 1 + n.

Page 216

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

a[i] a[0] a[i] a[1] a[i] a[2] a[i] a[3]

Tree

Add

0/1 0/10/1 0/1

Add

0/1/2 0/1/2

Add

Figure 9.2 Parallelizing the rank computation.

0/1/2/3/4

Compare

Reduction in Number of Steps

Tree structure to reduce the number of steps involved in incrementing the counter:

Ο(logn) algorithm with n2 processors. Processor efficiency relatively low.

Parallel Rank Sort Conclusions

Rank sort can sort in Ο(n) with n processors or in Ο(logn) using n2 processors.

In practical applications, using n2 processors will be prohibitive.

Theoretically possible to reduce time complexity to Ο(1) by considering all increment

operations as happening in parallel since they are independent of each other. Ο(1) is, of

course, the lower bound for any problem.

Page 217

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Figure 9.3 Rank sort using a master and slaves.

a[] b[]

Slaves

Master

Read
numbers

Place selected
number

Message Passing Parallel Rank Sort
Master-Slave Approach

Requires shared access to the list of numbers. Master process responds to request for
numbers from slaves. Algorithm better for shared memory

Compare-and-Exchange Sorting Algorithms

Compare and Exchange

Form the basis of several, if not most, classical sequential sorting algorithms.

Two numbers, say A and B, are compared. If A > B, A and B are exchanged, i.e.:

if (A > B) {
temp = A;
A = B;
B = temp;

}

Page 218

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Message-Passing Compare and Exchange

To implement compare and exchange is for P1 to send A to P2, which compares A and B
and sends back B to P1 if A is larger than B (otherwise it sends back A to P1):

A

P1

Compare

B

P2

Send(A)

If A > B send(B)

Figure 9.4 Compare and exchange on a message-passing system — Version 1.

If A > B load A
else load B

else send(A)

1

3

2

Sequence of steps

Code:

Process P1

send(&A, P2);
recv(&A, P2);

Process P2

recv(&A, P1);
if (A > B) {

send(&B, P1);
B = A;

} else
send(&A, P1);

Page 219

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Compare

A

P1

Compare

B

P2

Send(A)

Send(B)

Figure 9.5 Compare and exchange on a message-passing system — Version 2.

If A > B load AIf A > B load B

1

3

2

3

Alternative Message Passing Method

For P1 to send A to P2 and P2 to send B to P1. Then both processes perform compare
operations. P1 keeps the larger of A and B and P2 keeps the smaller of A and B:

Code:

Process P1

send(&A, P2);
recv(&B, P2);
if (A > B) A = B;

Process P2

recv(&A, P1);
send(&B, P1);
if (A > B) B = A;

Process P1 performs the send() first and process P2 performs the recv() first to avoid
deadlock. Alternatively, both P1 and P2 could perform send() first if locally blocking
(asynchronous) sends are used and sufficient buffering is guaranteed to exist - not safe
message passing.

Page 220

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Note on Precision of Duplicated Computations

Previous code assumes that the if condition, A > B, will return the same Boolean answer

in both processors.

Different processors operating at different precision could conceivably produce

different answers if real numbers are being compared.

This situation applies to anywhere computations are duplicated in different processors

to reduce message passing, or to make the code SPMD.

43
42
28
25

88
50
28
25

Return
lower
numbers

98
80
43
42

88
50
28
25

43
42
28
25

98
88
80
50

Merge

Keep
higher
numbers

Figure 9.6 Merging two sublists — Version 1.

Original
numbers

Final
numbers

P1 P2

Data Partitioning

p processors and n numbers. A list of n/p numbers would be assigned to each processor:

Page 221

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

88
50
28
25

98
80
43
42

43
42
28
25

98
88
80
50

Merge

Keep
lower
numbers

88
50
28
25

98
80
43
42

43
42
28
25

98
88
80
50

Merge

Keep
higher
numbers

Figure 9.7 Merging two sublists — Version 2.

P1 P2

Original
numbers

Original
numbers

(final

(final
numbers)

numbers)

Time

4 2 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 5 8 1 3 6

2 4 7 5 1 8 3 6

2 4 7 5 1 3 8 6

2 4 7 5 1 3 6 8

2 4 7 5 1 3 6 8

2 4 7 5 1 3 6 8

2 4 5 7 1 3 6 8

Original

Phase 1

Phase 2

sequence: 4 2 7 8 5 1 3 6

Place
largest
number

Place
next
largest
number

Figure 9.8 Steps in bubble sort.

Page 222

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Sequential Code

With numbers held in array a[]:

for (i = n - 1; i > 0; i--)
for (j = 0; j < i; j++) {
k = j + 1;
if (a[j] > a[k]) {
temp = a[j];
a[j] = a[k];
a[k] = temp;

}
}

Time Complexity

which indicates a time complexity of Ο(n2) given that a single compare-and-exchange

operation has a constant complexity, Ο(1).

Number of compare and exchange operations i
i 1=

n 1–

∑ n n 1–()
2

--------------------= =

Page 223

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

1

1

1

12

2

3 2 1

Time

Figure 9.8 Overlapping bubble sort actions in a pipeline.

Phase 3

Phase 2

Phase 1

3 2 1

Phase 4

4 3 2 1

Parallel Bubble Sort
Iteration could start before previous iteration finished if does not overtake previous bubbling action:

Odd-Even (Transposition) Sort

Variation of bubble sort.

Operates in two alternating phases, an even phase and an odd phase.

Even phase

Even-numbered processes exchange numbers with their right neighbor.

Odd phase

Odd-numbered processes exchange numbers with their right neighbor.

Page 224

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

4 2 7 5 1 68 3

2 4 7 1 5 68 3

2 4 7 8 3 61 5

2 4 1 3 8 67 5

2 1 4 7 5 63 8

1 2 3 5 7 84 6

1 2 3 5 6 84 7

1 2 3 5 6 84 7

Step

1

2

3

4

5

6

7

0

Figure 9.9 Odd-even transposition sort sorting eight numbers.

P0 P1 P2 P3 P4 P5 P6 P7

Time

Odd-Even Transposition Sort Code

Even Phase

Pi, i = 0, 2, 4, …, n - 2 (even)Pi, i = 1, 3, 5, …, n - 1 (odd)

recv(&A, Pi+1); send(&A, Pi-1); /* even phase */
send(&B, Pi+1); recv(&B, Pi-1);
if (A > B) B = A; if (A > B) A = B;/* exchange */

where the number stored in Pi (even) is B and the number stored in Pi (odd) is A.

Odd Phase

Pi, i = 1, 3, 5, …, n - 3 (odd)Pi, i = 2, 4, 6, …, n - 2 (even)

send(&A, Pi+1); recv(&A, Pi-1); /* odd phase */
recv(&B, Pi+1); send(&B, Pi-1);
if (A > B) A = B; if (A > B) B = A; /* exchange */

Page 225

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Combined

Pi, i = 1, 3, 5, …, n - 3 (odd) Pi, i = 0, 2, 4, …, n - 2 (even)

send(&A, Pi-1); recv(&A, Pi+1); /* even phase */
recv(&B, Pi-1); send(&B, Pi+1);
if (A > B) A = B; if (A > B) B = A;
if (i <= n-3) { if (i >= 2) { /* odd phase */

send(&A, Pi+1); recv(&A, Pi-1);
recv(&B, Pi+1) send(&B, Pi-1);
if (A > B) A = B; if (A > B) B = A;

} }

Smallest

Largest

number

number

Figure 9.10 Snakelike sorted list.

Two-Dimensional Sorting

The layout of a sorted sequence on a mesh could be row by row or snakelike. In a
snakelike sorted list, the numbers are arranged in nondecreasing order:

Page 226

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Shearsort

Requires steps for n numbers on a × mesh.

Odd phase

Each row of numbers is sorted independently, in alternative directions:

Even rows — The smallest number of each column is placed at the rightmost end
and largest number at the leftmost end.
Odd rows — The smallest number of each column is placed at the leftmost end
and the largest number at the rightmost end.

Even phase

Each column of numbers is sorted independently, placing the smallest number of
each column at the top and the largest number at the bottom.

After logn + 1 phases, numbers sorted with a snakelike placement in mesh.

The alternating directions of the row sorting phase matches final snakelike layout.

n nlog 1+() n n

4 14 8 2

10 3 13 16

7 15 1 5

12 6 11 9

2 4 8 14

16 13 10 3

1 5 7 15

12 11 9 6

1 4 7 3

2 5 8 6

12 11 9 14

16 13 10 15

1 3 4 7

8 6 5 2

9 11 12 14

16 15 13 10

1 3 4 2

8 6 5 7

9 11 12 10

16 15 13 14

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

(a) Original placement

Figure 9.11 Shearsort.

(b) Phase 1 — Row sort (c) Phase 2 — Column sort

(d) Phase 3 — Row sort (e) Phase 4 — Column sort (f) Final phase — Row sort

of numbers

Page 227

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

(b) Transpose operation(a) Operations between elements
in rows

(c) Operations between elements
in rows (originally columns)

Figure 9.12 Using the transpose operation to maintain operations in rows.

Using Transposition

A transpose operation causes the elements in each column to be in positions in a row.
Can be placed between the row operations and column operations:

Transposition can be achieved with (− 1) communications (Ο(n)).
An all-to-all routine could be reduce this.

n n

4 2 6

4 2 7 8 5 1 3 6

4 2 7 8 5 1 3 6

7 8 5 1 3

4 2 67 8 5 1 3

2 4 6

1 2 3 4 5 6 7 8

2 4 7 8 1 3 5 6

7 8 1 5 3

Sorted list

Unsorted list

Figure 9.13 Mergesort using tree allocation of processes.

Merge

Divide
list

P0

P2P0

P4 P5 P6 P7P1 P2 P3P0

P0

P6P4

P4

P0

P2P0

P0

P6P4

P4

Process allocation

Mergesort

Page 228

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Analysis

Sequential

Sequential time complexity is Ο(nlogn).

Parallel

There are 2 log n steps in the parallel version but each step may need to perform more

than one basic operation, depending upon the number of numbers being processed.

- Next slide

Communication
In the division phase, communication only takes place as follows:

Communication at each stepProcessor communication

tstartup + (n/2)tdata P0 → P4
tstartup + (n/4)tdata P0 → P2; P4 → P6
tstartup + (n/8)tdata P0 → P1; P2 → P3; P4 → P5; P6 → P7

.

with log p steps, given p processors. In the merge phase, the reverse communications
take place:

tstartup + (n/8)tdata P0 → P1; P2 → P3; P4 → P5; P6 → P7
tstartup + (n/4)tdata P0 → P2; P4 → P6
tstartup + (n/2)tdata P0 → P4

.

again log p steps. This leads to the communication time being

tcomm = 2(tstartup + (n/2)tdata + tstartup + (n/4)tdata + tstartup + (n/8)tdata + …)

or:

tcomm ≈ 2(log p)tstartup + 2ntdata

Page 229

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Computation

Computations only occurs in merging the sublists. Merging can be done by stepping
through each list, moving the smallest found into the final list first. It takes 2n − 1 steps
in the worst case to merge two sorted lists each of n numbers into one sorted list.

Therefore, the computation consists of

tcomp = 1 P0; P2; P4; P6
tcomp = 3 P0; P2
tcomp = 7 P0

.

Hence:

The parallel computational time complexity is Ο(p) using p processors and one number
in each processor.
As with all sorting algorithms, normally we would partition the list into groups, one
group of numbers for each processor.

tcomp 2
i

1–()
i 1=

plog

∑=

Quicksort

Sequential time complexity of Ο(nlogn). The question to answer is whether a parallel

version can achieve the time complexity of Ο(logn) with n processors.

Quicksort sorts a list of numbers by first dividing the list into two sublists, as in

mergesort.

All the numbers in one sublist are arranged to be smaller than all the numbers in the

other sublist.

Achieved by first selecting one number, called a pivot, against which every other

number is compared.

If the number is less than the pivot, it is placed in one sublist. Otherwise, it is placed in

the other sublist.

By repeating the procedure sufficiently, we are left with sublists of one number each.

With proper ordering of the sublists, a sorted list is obtained.

Page 230

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Sequential Code

Suppose an array list[] holds the list of numbers and pivot is the index in the array
of the final position of the pivot:

quicksort(list, start, end)
{
if (start < end) {
partition(list, start, end, pivot)
quicksort(list, start, pivot-1);/* recursively call on sub-

lists*/
quicksort(list, pivot+1, end);

}
}

Partition() moves numbers in list between start to end so that those less than the
pivot are before the pivot and those equal or greater than the pivot are after the pivot.

The pivot is in its final position of the sorted list.

P4

P6P1P0

2 1 6

4 2 7 8 5 1 3 6

3 2 1 4 5 7 8 6

3 4 5 7 8

1 2 7 86

Sorted list

Unsorted list

Figure 9.14 Quicksort using tree allocation of processes.

P0

P0

P7

P0

P6

P4

Process allocation

Pivot

3

P2

Parallelizing Quicksort

Page 231

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

862 6

1 2 6

4 2 7 8 5 1 3 6

3 2 1 5 7 8 6

7 8

Sorted list

Unsorted list

Figure 9.15 Quicksort showing pivot withheld in processes.

4

1

82

3

7

5

Pivots

Pivot

With the pivot being withheld

Analysis

Fundamental problem with all tree constructions – initial division done by a single pro-
cessor, which will seriously limit speed. Suppose pivot selection is ideal and each
division creates two sublists of equal size.

Computation

First, one processor operates upon n numbers. Then two processors each operate upon
n/2 numbers. Then four processors each operate upon n/4 numbers, and so on:

tcomp = n + n/2 + n/4 + n/8 + … ≈ 2n

Communication

Communication also occurs in a similar fashion as for mergesort:

tcomm = (tstartup + (n/2)tdata) + (tstartup + (n/4)tdata) + (tstartup + (n/8)tdata) + …

≈ (log p)tstartup + ntdata

Tree in quicksort will not, in general, be perfectly balanced Pivot selection very
important to make quicksort operate fast.

Page 232

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Work pool

Sublists

Slave processes

Request
sublist Return

sublist

Figure 9.16 Work pool implementation of quicksort.

Work Pool Implementation

First, the work pool holds the initial unsorted list given to first processor whcih divides
list into two parts. One part returned to work pool to be given to another processor,
while the other part is operated upon again.

Quicksort on a Hypercube
Complete List Placed in One Processor

List divided into two parts using a pivot determined by processor, with one part sent to
adjacent node in highest dimension. Then the two nodes can repeat the process, dividing
their lists into two parts using locally selected pivots. One part is sent to a node in the
next highest dimension. Continued for logd steps for a d-dimensional hypercube.

Node Node

1st step: 000 → 001 (numbers greater than a pivot, say p1)

2nd step: 000 → 010 (numbers greater than a pivot, say p2)
001 → 011 (numbers greater than a pivot, say p3)

3rd step: 000 → 100 (numbers greater than a pivot, say p4)
001 → 101 (numbers greater than a pivot, say p5)
010 → 110 (numbers greater than a pivot, say p6)
011 → 111 (numbers greater than a pivot, say p7)

Page 233

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

(a) Phase 1 001 010 011 100 101 110 111000

001 010 011 100 101 110 111000(b) Phase 2

≤ p1 > p1

001 010 011 100 101 110 111000(c) Phase 3

> p2 > p3≤ p3≤ p2

> p6 > p7≤ p7≤ p6> p4 > p5≤ p5≤ p4

Figure 9.17 Hypercube quicksort algorithm when the numbers are originally
in node 000.

Numbers Initially Distributed across All Processors
Steps

1. One processor (say P0) selects (or computes) a suitable pivot and broadcasts this to
all others in the cube.

2. Processors in “lower” subcube send their numbers which are greater than pivot to
their partner processor in “upper” subcube. Processors in “upper” subcube send
their numbers which are equal to or less than the pivot to their partner processor in
“lower” cube.

3. Each processor concatenates the list received with what remains of its own list.

After these steps the numbers in lower subcube will all be equal to or less than the
pivot and all the numbers in upper subcube will be greater than pivot. Steps 2 and 3 are
now repeated recursively on the two subcubes. One process in each subcube computes
a pivot for its subcube and broadcasts it throughout its subcube. These actions
terminate after log d recursive phases. Suppose the hypercube has three dimensions.
The numbers in processor 000 will be smaller than numbers in processor 001, which
will be smaller than numbers in processor 010, and so on.

Page 234

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

(a) Phase 1

Broadcast pivot, p1

001 010 011 100 101 110 111000

001 010 011 100 101 110 111000(b) Phase 2

≤ p1 > p1

Broadcast pivot, p3Broadcast pivot, p2

001 010 011 100 101 110 111000(c) Phase 3

Broadcast
pivot, p4

Broadcast
pivot, p5

Broadcast
pivot, p6

Broadcast
pivot, p7

> p2 > p3≤ p3≤ p2

> p6 > p7≤ p7≤ p6> p4 > p5≤ p5≤ p4

Figure 9.18 Hypercube quicksort algorithm when numbers are distributed among nodes.

(a) Phase 1 communication

Figure 9.19 Hypercube quicksort communication.

000 001

101

010 011

110 111

100

Communication Patterns in Hypercube

Page 235

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

(b) Phase 2 communication

000 001

101

010 011

110 111

100

(c) Phase 3 communication

000 001

101

010 011

110 111

100

Page 236

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Pivot Selection

Poor pivot selection could result in most of the numbers being allocated to a small part

of the hypercube, leaving the rest idle. This is most deleterious in the first split.

In sequential quicksort algorithm, often pivot is simply chosen to be first number in the

list, which could be obtained in a single step or with Ο(1) time complexity.

One approach – take a sample of a numbers from the list, compute the mean value, and

select the median as the pivot. The numbers sampled would need to be sorted at least

halfway through to find the median.

We might choose a simple bubble sort, which can be terminated when the median is

reached.

Hyperquicksort
Sorts numbers at each stage to maintain sorted numbers in each processor. Simplifies

selecting pivots and eliminates final sorting operation.

Steps

1. Each processor sorts its list sequentially.

2. One processor (say P0) selects (or computes) a suitable pivot and broadcasts this
pivot to all others in the cube.

3. The processors in the “lower” subcube send their numbers, which are greater than
the pivot, to their partner processor in the “upper” subcube. The processors in the
“upper” subcube send their numbers, which are equal to or less than the pivot, to
their partner processor in the “lower” cube.

4. Each processor merges the list received with its own to obtain a sorted list.

Steps 2, 3, and 4 are repeated (d phases in all for a d-dimensional hypercube).

Page 237

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

(a) Phase 1

Broadcast pivot, p1

001 011 010 110 111 101 100000

001 011 010 110 111 101 100000(b) Phase 2

≤ p1 > p1

Broadcast pivot, p3Broadcast pivot, p2

001 011 010 110 111 101 100000(c) Phase 3

Broadcast
pivot, p4

Broadcast
pivot, p5

Broadcast
pivot, p6

Broadcast
pivot, p7

> p2 > p3≤ p3≤ p2

> p6 > p7≤ p7≤ p6> p4 > p5≤ p5≤ p4

Figure 9.20 Quicksort hypercube algorithm with Gray code ordering.

Analysis
Initially, each processor has n/p numbers. Afterward, it will vary. Let it be x.
Algorithm has d phases. After initial sorting step requiring Ο(n/plog n/p), each phase
has pivot selection, pivot broadcast, a data split, data communication, and data merge.

Computation — Pivot Selection
With a sorted list, pivot selection can be done in one step, O(1), if there always were n/
p numbers. In the more general case, the time complexity will be higher.

Communication — Pivot Broadcast

Computation — Data Split
If the numbers are sorted and there are x numbers, split operation done in log x steps.

Communication — Data from Split

Computation — Data Merge
To merge two sorted lists into one sorted list requires x steps if biggest list has x numbers.

Total - sum of the individual communication times and computation times.

d d 1–()
2

-------------------- tstartup tdata+()

tstartup
x
2
---tdata+

Page 238

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Odd-Even Mergesort
Odd-Even Merge Algorithm

Will merge two sorted lists into one sorted list. Given two sorted lists a1, a2, a3, …, an
and b1, b2, b3, …, bn (where n is a power of 2), the following actions are performed:

1. The elements with odd indices of each sequence — that is, a1, a3, a5, …, an−1, and
b1, b3, b5, …, bn−1 — are merged into one sorted list, c1, c2, c3, …, cn.

2. The elements with even indices of each sequence — that is, a2, a4, a6, …, an, and
b2, b4, b6, …, bn — are merged into one sorted list, d1, d2, …, dn.

3. The final sorted list, e1, e2, …, e2n, is obtained by the following:
e2i = min{ci+1, di}
e2i+1 = max{ci+1, di}

for 1 ≤ i ≤ n−1. Essentially the odd and even index lists are interleaved, and pairs of
odd/even elements are interchanged to move the larger toward one end, if necessary.

First number is e1 = c1 (since this is smallest of first elements of each list, a1 or b1) and
last number is e2n = dn (since this is largest of last elements of each list, an or bn).

82 4 5 1 6 73

83 4 761 2 5

Odd indices
Even indices

Sorted lists

a[] b[]

c[] d[]

e[]Final sorted list

Compare and exchange

1 2 3 4 5 6 7 8

Figure 9.21 Odd-even merging of two sorted lists.

Merge

Merge

Page 239

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

a2

b2

a4

b4

a3

b3

a1

b1

bn

anan−1

bn−1

Even
mergesort

Odd
mergesort

c1
c2
c3
c4

c2nc2n−1

Compare and
exchange

Figure 9.22 Odd-even mergesort.

c5

c7c6

c2n−2

Bitonic Mergesort

Bitonic Sequence

A monotonic increasing sequence is a sequence of increasing numbers.

A bitonic sequence has two sequences, one increasing and one decreasing. e.g.

a0 < a1 < a2, a3, …, ai−1 < ai > ai+1, …, an−2 > an−1

for some value of i (0 ≤ i < n).

A sequence is also bitonic if the preceding can be achieved by shifting the numbers cy-
clically (left or right).

Page 240

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

a0, a1, a2, a3, … an−2, an−1

Figure 9.23 Bitonic sequences.

Value

a0, a1, a2, a3, … an−2, an−1

(a) Single maximum (b) Single maximum and single minimum

“Special” Characteristic of Bitonic Sequences

If we perform a compare-and-exchange operation on ai with ai+n/2 for all i , where there

are n numbers in the sequence, get two bitonic sequences, where the numbers in one

sequence are all less than the numbers in the other sequence.

Page 241

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

3 5 8 9 7 4 2 1

3 4 2 1 7 5 8 9

Bitonic sequence

Bitonic sequence Bitonic sequence

Compare and
exchange

Figure 9.24 Creating two bitonic sequences from one bitonic sequence.

Example
Starting with the bitonic sequence

3, 5, 8, 9, 7, 4, 2, 1

we get the sequences shown below

3 5 8 9 7 4 2 1

3 4 2 1 7 5 8 9

Compare and
exchange

2 1 3 4 7 5 8 9

1 2 3 4 5 7 8 9
Sorted list

Figure 9.25 Sorting a bitonic sequence.

Unsorted numbers

Compare-and-exchange operation moves smaller numbers of each pair to the left
sequence and larger numbers of the pair to the right sequence. Given a bitonic
sequence, recursively performing compare-and-exchange operations will sort the list.

Page 242

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Sorting

To sort an unordered sequence, sequences are merged into larger bitonic sequences,

starting with pairs of adjacent numbers.

By a compare-and-exchange operation, pairs of adjacent numbers are formed into

increasing sequences and decreasing sequences, pairs of which form a bitonic sequence

of twice the size of each of the original sequences.

By repeating this process, bitonic sequences of larger and larger lengths are obtained.

In the final step, a single bitonic sequence is sorted into a single increasing sequence.

Sorted list

Figure 9.26 Bitonic mergesort.

Unsorted numbers

Bitonic
sorting
operation

Direction
of increasing
numbers

Page 243

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

8 3 4 7 9 2 1 5

3 8 7 4 2 9 5 1

3 4 7 8 5 9 2 1

3 4 7 8 9 5 2 1

3 4 2 1 9 5 7 8

2 1 3 4 7 5 9 8

1 2 3 4 5 7 8 9

1

2

3

4

5

6

Compare and exchange ai with ai+n/2

n = 2 ai with ai+1

n = 4 ai with ai+2

Form
bitonic lists
of four

Form
bitonic list
of eight

numbers

numbers

Split

Sort

n = 2 ai with ai+1

Sort bitonic list

n = 8 ai with ai+4

n = 4 ai with ai+2

n = 2 ai with ai+1

Split

Split

Sort

Step

Figure 9.27
Bitonic
mergesort on
eight
numbers.

Compare and
exchange

HigherLower

= bitonic list
[Fig. 9.24 (a) or (b)]

Phases

The six steps (for eight numbers) are divided into three phases:

Phase 1 (Step 1) Convert pairs of numbers into increasing/decreasing sequences
and hence into 4-bit bitonic sequences.

Phase 2 (Steps 2/3)Split each 4-bit bitonic sequence into two 2-bit bitonic
sequences, higher sequences at center.

Sort each 4-bit bitonic sequence increasing/decreasing sequences
and merge into 8-bit bitonic sequence.

Phase 3 (Steps 4/5/6)Sort 8-bit bitonic sequence (as in Figure 9.27).

Page 244

Slides for Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers
Barry Wilkinson and Michael Allen  Prentice Hall, 1999. All rights reserved.

Number of Steps

In general, with n = 2k, there are k phases, each of 1, 2, 3, …, k steps. Hence the total

number of steps is given by

Steps i
i 1=

k

∑ k k 1+()
2

n nlog 1+()log

2
------------------------------------- Ο n2log()= = = =

