
Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 417

Sorting Algorithms

- rearranging a list of numbers into increasing (strictly non-

decreasing) order.

Chapter 9

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 418

Potential Speedup

Ο(n logn) optimal for any sequential sorting algorithm without using
special properties of the numbers.

Best we can expect based upon a sequential sorting algorithm
using n processors is

Has been obtained but the constant hidden in the order notation
extremely large.
Also an algorithm exists for an n-processor hypercube using
random operations.

But, in general, a realistic Ο(logn) algorithm with n processors not
be easy to achieve.

Optimal parallel time complexity
O(n n)log

n
------------------------- O(n)log= =

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 419

Sorting Algorithms Reviewed

• Rank sort
(to show that an non-optimal sequential algorithm may in fact be a good
parallel algorithm

• Compare and exchange operations
(to show the effect of duplicated operations can lead to erroneous results)

• Bubble sort and odd-even transposition sort

• Two dimensional sorting - Shearsort (with use of transposition)

• Parallel Mergesort

• Parallel Quicksort

• Odd-even Mergesort

• Bitonic Mergesort

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 420

Rank Sort

The number of numbers that are smaller than each selected
number is counted. This count provides the position of selected
number in sorted list; that is, its “rank.”

First a[0] is read and compared with each of the other numbers,
a[1] … a[n-1], recording the number of numbers less than
a[0].Suppose this number is x. This is the index of the location in
the final sorted list. The number a[0] is copied into the final sorted
list b[0] … b[n-1], at location b[x]. Actions repeated with the
other numbers.

Overall sequential sorting time complexity of Ο(n2) (not exactly a
good sequential sorting algorithm!).

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 421

Sequential Code

for (i = 0; i < n; i++) { /* for each number */
x = 0;
for (j = 0; j < n; j++) /* count number less than it */
if (a[i] > a[j]) x++;

b[x] = a[i]; /* copy number into correct place */
}

This code will fail if duplicates exist in the sequence of numbers.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 422

Parallel Code
Using n Processors

One processor allocated to each number. Finds final index in Ο(n)

steps. With all processors operating in parallel, parallel time

complexity Ο(n).

In forall notation, the code would look like

forall (i = 0; i < n; i++) {/* for each no in parallel*/
x = 0;
for (j = 0; j < n; j++) /* count number less than it */
if (a[i] > a[j]) x++;

b[x] = a[i]; /* copy no into correct place */
}

Parallel time complexity, Ο(n), better than any sequential sorting
algorithm. Can do even better if we have more processors.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 423

a[i] a[0] a[i] a[n-1]

Increment
counter, x

b[x] = a[i]

Compare

Using n2 Processors

Comparing one number with the other numbers in list using multiple
processors:

n − 1 processors used to find rank of one number. With n numbers,
(n − 1)n processors or (almost) n2 processors needed. Incrementing
the counter done sequentially and requires maximum of n steps.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 424

a[i] a[0] a[i] a[1] a[i] a[2] a[i] a[3]

Tree

Add

0/1 0/10/1 0/1

Add

0/1/2 0/1/2

Add

0/1/2/3/4

Compare

Reduction in Number of Steps

Tree to reduce number of steps involved in incrementing counter:

Ο(logn) algorithm with n2 processors.
Processor efficiency relatively low.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 425

Parallel Rank Sort Conclusions

Easy to do as each number can be considered in isolation.

Rank sort can sort in:

Ο(n) with n processors

or

Ο(logn) using n2 processors.

In practical applications, using n2 processors prohibitive.

Theoretically possible to reduce time complexity to Ο(1) by
considering all increment operations as happening in parallel since
they are independent of each other.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 426

a[] b[]

Slaves

Master

Read
numbers

Place selected
number

Message Passing Parallel Rank Sort
Master-Slave Approach

Requires shared access to list of numbers. Master process
responds to request for numbers from slaves. Algorithm better for
shared memory

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 427

Compare-and-Exchange Sorting Algorithms

Compare and Exchange

Form the basis of several, if not most, classical sequential sorting

algorithms.

Two numbers, say A and B, are compared. If A > B, A and B are

exchanged, i.e.:

if (A > B) {
temp = A;
A = B;
B = temp;

}

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 428

Message-Passing Compare and Exchange

Version 1

P1 sends A to P2, which compares A and B and sends back B to P1

if A is larger than B (otherwise it sends back A to P1):

A

P1

Compare

B

P2

Send(A)

If A > B send(B)

If A > B load A
else load B

else send(A)

1

3

2

Sequence of steps

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 429

Compare

A

P1

Compare

B

P2

Send(A)

Send(B)

If A > B load A

If A > B load B

1

3

2

3

Alternative Message Passing Method

Version 2

For P1 to send A to P2 and P2 to send B to P1. Then both processes

perform compare operations. P1 keeps the larger of A and B and P2

keeps the smaller of A and B:

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 430

Note on Precision of Duplicated Computations

Previous code assumes that the if condition, A > B, will return the

same Boolean answer in both processors.

Different processors operating at different precision could

conceivably produce different answers if real numbers are being

compared.

This situation applies to anywhere computations are duplicated in

different processors to reduce message passing, or to make the

code SPMD.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 431

43
42
28
25

88
50
28
25

Return
lower
numbers

98
80
43
42

88
50
28
25

43
42
28
25

98
88
80
50

Merge

Keep
higher
numbers

Original
numbers

Final
numbers

P1 P2

Data Partitioning

(Version 1)

p processors and n numbers. n/p numbers assigned to each

processor:

Original
numbers

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 432

88
50
28
25

98
80
43
42

43
42
28
25

98
88
80
50

Merge

Keep
lower
numbers

88
50
28
25

98
80
43
42

43
42
28
25

98
88
80
50

Merge
Keep
higher
numbers

Merging Two Sublists — Version 2

P1 P2

Original
numbers

Original
numbers

(final

(final
numbers)

numbers)

Original
numbers

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 433

Time

4 2 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 8 5 1 3 6

2 4 7 5 8 1 3 6

2 4 7 5 1 8 3 6

2 4 7 5 1 3 8 6

2 4 7 5 1 3 6 8

2 4 7 5 1 3 6 8

2 4 7 5 1 3 6 8

2 4 5 7 1 3 6 8

Original

Phase 1

Phase 2

sequence: 4 2 7 8 5 1 3 6

Place
largest
number

Place
next
largest
number

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 434

Time Complexity

which indicates a time complexity of Ο(n2) given that a single

compare-and-exchange operation has a constant complexity, Ο(1).

Number of compare and exchange operations i
i 1=

n 1–
∑ n n 1–()

2--------------------= =

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 435

1

1

1

12

2

3 2 1

Time
Phase 3

Phase 2

Phase 1

3 2 1

Phase 4

4 3 2 1

Parallel Bubble Sort

Iteration could start before previous iteration finished if does not

overtake previous bubbling action:

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 436

Odd-Even (Transposition) Sort

Variation of bubble sort.

Operates in two alternating phases, even phase and odd phase.

Even phase

Even-numbered processes exchange numbers with their right
neighbor.

Odd phase

Odd-numbered processes exchange numbers with their right
neighbor.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 437

4 2 7 5 1 68 3

2 4 7 1 5 68 3

2 4 7 8 3 61 5

2 4 1 3 8 67 5

2 1 4 7 5 63 8

1 2 3 5 7 84 6

1 2 3 5 6 84 7

1 2 3 5 6 84 7

Step

1

2

3

4

5

6

7

0

Odd-Even Transposition Sort
Sorting eight numbers

P0 P1 P2 P3 P4 P5 P6 P7

Time

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 438

Smallest

Largest

number

number

Two-Dimensional Sorting

The layout of a sorted sequence on a mesh could be row by row or

snakelike. Snakelike:

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 439

4 14 8 2

10 3 13 16

7 15 1 5

12 6 11 9

2 4 8 14

16 13 10 3

1 5 7 15

12 11 9 6

1 4 7 3

2 5 8 6

12 11 9 14

16 13 10 15

1 3 4 7

8 6 5 2

9 11 12 14

16 15 13 10

1 3 4 2

8 6 5 7

9 11 12 10

16 15 13 14

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

(a) Original placement

Shearsort
Alternate row and column sorting until list fully sorted. Row sorting
alternative directions to get snake-like sorting:

(b) Phase 1 — Row sort (c) Phase 2 — Column sort

(d) Phase 3 — Row sort (e) Phase 4 — Column sort (f) Final phase — Row sort

of numbers

Smallest

Largest

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 440

Shearsort

Requires steps for n numbers on a × mesh.n nlog 1+() n n

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 441

(b) Transpose operation(a) Operations between elements
in rows

(c) Operations between elements
in rows (originally columns)

Using Transposition

Causes the elements in each column to be in positions in a row.
Can be placed between the row operations and column operations:

Transposition can be achieved with (− 1) communications
(Ο(n)). An all-to-all routine could be reduce this.

n n

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 442

4 2 6

4 2 7 8 5 1 3 6

4 2 7 8 5 1 3 6

7 8 5 1 3

4 2 67 8 5 1 3

2 4 6

1 2 3 4 5 6 7 8

2 4 7 8 1 3 5 6

7 8 1 5 3

Sorted list

Unsorted list

Merge

Divide
list

P0

P2P0

P4 P5 P6 P7P1 P2 P3P0

P0

P6P4

P4

P0

P2P0

P0

P6P4

P4

Process allocation

Parallelizing Mergesort
Using tree allocation of processes

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 443

Analysis

Sequential

Sequential time complexity is Ο(n logn).

Parallel

2 log n steps in the parallel version but each step may need to
perform more than one basic operation, depending upon the
number of numbers being processed - see text.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 444

P4

P6P1P0

2 1 6

4 2 7 8 5 1 3 6

3 2 1 4 5 7 8 6

3 4 5 7 8

1 2 7 86

Sorted list

Unsorted list

P0

P0

P7

P0

P6

P4

Process allocation

Pivot

3

P2

Parallelizing Quicksort
Using tree allocation of processes

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 445

862 6

1 2 6

4 2 7 8 5 1 3 6

3 2 1 5 7 8 6

7 8

Sorted list

Unsorted list

4

1

82

3

7

5

Pivots

Pivot

With the pivot being withheld in processes:

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 446

Analysis

Fundamental problem with all tree constructions – initial division

done by a single processor, which will seriously limit speed.

Tree in quicksort will not, in general, be perfectly balanced Pivot

selection very important to make quicksort operate fast.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 447

Work pool

Sublists

Slave processes

Request
sublist Return

sublist

Work Pool Implementation of Quicksort

First, work pool holds initial unsorted list. Given to first processor
which divides list into two parts. One part returned to work pool to
be given to another processor, while the other part operated upon
again.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 448

Neither Mergesort nor Quicksort parallelize very well as the

processor efficiency is low (see book for analysis).

Quicksort also can be very unbalanced. Can use load balancing

techniques

Parallel hypercube versions of quicksort in textbook - however

hypercubes not now of much interest.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 449

Batcher’s Parallel Sorting Algorithms

• Odd-even Mergesort

• Bitonic Mergesort

Originally derived in terms of switching networks.

Both are well balanced and have parallel time complexity of

O(log2n) with n processors.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 450

Odd-Even Mergesort

Odd-Even Merge Algorithm

Start with odd-even merge algorithm which will merge two sorted

lists into one sorted list. Given two sorted lists a1, a2, a3, …, an and

b1, b2, b3, …, bn (where n is a power of 2)

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 451

82 4 5 1 6 73

83 4 761 2 5

Odd indices
Even indices

Sorted lists

a[] b[]

c[] d[]

e[]Final sorted list

Compare and exchange

1 2 3 4 5 6 7 8

Odd-Even Merging of Two Sorted Lists

Merge

Merge

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 452

a2

b2

a4

b4

a3

b3

a1

b1

bn

anan−1

bn−1

Even
mergesort

Odd
mergesort

c1
c2
c3
c4

c2nc2n−1

Compare and
exchange

Odd-Even Mergesort

Apply odd-even merging recursively

c5

c7c6

c2n−2

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 453

Bitonic Mergesort

Bitonic Sequence

A monotonic increasing sequence is a sequence of increasing
numbers.

A bitonic sequence has two sequences, one increasing and one
decreasing. e.g.

a0 < a1 < a2, a3, …, ai−1 < ai > ai+1, …, an−2 > an−1

for some value of i (0 ≤ i < n).

A sequence is also bitonic if the preceding can be achieved by
shifting the numbers cyclically (left or right).

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 454

a0, a1, a2, a3, … an−2, an−1

Bitonic Sequences

Value

a0, a1, a2, a3, … an−2, an−1

(a) Single maximum (b) Single maximum and single minimum

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 455

“Special” Characteristic of Bitonic Sequences

If we perform a compare-and-exchange operation on ai with ai+n/2

for all i , where there are n numbers in the sequence, get TWO

bitonic sequences, where the numbers in one sequence are all less

than the numbers in the other sequence.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 456

3 5 8 9 7 4 2 1

3 4 2 1 7 5 8 9

Bitonic sequence

Bitonic sequence Bitonic sequence

Compare and
exchange

Example - Creating two bitonic sequences from
one bitonic sequence

Starting with the bitonic sequence

3, 5, 8, 9, 7, 4, 2, 1

we get:

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 457

3 5 8 9 7 4 2 1

3 4 2 1 7 5 8 9

Compare and
exchange

2 1 3 4 7 5 8 9

1 2 3 4 5 7 8 9
Sorted list

Bitonic sequence

Sorting a bitonic sequence

Compare-and-exchange moves smaller numbers of each pair to left
and larger numbers of pair to right. Given a bitonic sequence,
recursively performing operations will sort the list.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 458

Sorting

To sort an unordered sequence, sequences are merged into larger
bitonic sequences, starting with pairs of adjacent numbers.

By a compare-and-exchange operation, pairs of adjacent numbers
are formed into increasing sequences and decreasing sequences,
pairs of which form a bitonic sequence of twice the size of each of
the original sequences.

By repeating this process, bitonic sequences of larger and larger
lengths are obtained.

In the final step, a single bitonic sequence is sorted into a single
increasing sequence.

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 459

Sorted list

Bitonic Mergesort

Unsorted numbers

Bitonic
sorting
operation

Direction
of increasing
numbers

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 460

8 3 4 7 9 2 1 5

3 8 7 4 2 9 5 1

3 4 7 8 5 9 2 1

3 4 7 8 9 5 2 1

3 4 2 1 9 5 7 8

2 1 3 4 7 5 9 8

1 2 3 4 5 7 8 9

1

2

3

4

5

6

Form
bitonic lists
of four

Form
bitonic list
of eight

numbers

numbers

Sort bitonic list

StepBitonic
Mergesort
on Eight
Numbers

Compare and
exchange

HigherLower

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 461

Phases

The six steps (for eight numbers) are divided into three phases:

Phase 1 (Step 1) Convert pairs of numbers into increasing/
decreasing sequences and hence into 4-bit
bitonic sequences.

Phase 2 (Steps 2/3) Split each 4-bit bitonic sequence into two 2-bit
bitonic sequences, higher sequences at
center.

Sort each 4-bit bitonic sequence increasing/
decreasing sequences and merge into 8-bit
bitonic sequence.

Phase 3 (Steps 4/5/6)Sort 8-bit bitonic sequence

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 462

Number of Steps

In general, with n = 2k, there are k phases, each of 1, 2, 3, …, k

steps. Hence the total number of steps is given by

Steps i
i 1=

k
∑ k k 1+()

2--------------------
n nlog 1+()log

2------------------------------------- Ο n2log()= = = =

Slides for Parallel Programming Techniques and Applications Using Networked Workstations and Parallel Computers by Barry Wilkinson and Michael Allen,
Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-671710-1. 2002 by Prentice Hall Inc. All rights reserved.

Slide 463

Sorting Conclusions

Computational time complexity using n processors

• Ranksort O(n)

• Odd-even transposition sort- O(n)

• Parallel mergesort - O(n) but unbalanced processor load and
communication

• Parallel quicksort - O(n) but unbalanced processor load, and
communication can generate to O(n2)

• Odd-even Mergesort and Bitonic Mergesort O(log2n)

Bitonic mergesort has been a popular choice for a parallel sorting.

