ML Programming Problems

from CMU Computer Science 15-212, Spring 2003

Problem 1: ML Warm-Up Exercises

These exercises are designed for you to explore SML’s basic functions and libraries.

Question 1.1

Write a function check : int -> bool that decides whether its integer argument is a strictly

negative number whose value is 7 more than a multiple of 13. For instance:

check(~6) =⇒ true

check(~20) =⇒ false

check(20) =⇒ false

check(~123) =⇒ true

Question 1.2

Write a function average: int * int -> real. The function should take a pair consisting of

two integers, n and m, and return their average (n+m)/2 2 as a real number. For instance,

average(5,10) =⇒ 7.5

average(20, 30) =⇒ 25.0

Question 1.3

Write a function positive : (real->real) * real -> real. The function should take a pair

as argument. The first component of the pair should be a function f of type real -> real

and the second component a number x of type real. The function positive should return the

value f(x) whenever that value is positive; otherwise positive should return the value 0.0. For

instance,

positive(Math.sin, 2.0) =⇒ 0.909297426826

positive(Math.cos, 2.0) =⇒ 0.0

Question 1.4

Write a function duplicate : string -> string that takes a string as argument and returns

the string concatenated with itself. For instance,

duplicate("here") =⇒ "herehere"

duplicate("pop") =⇒ "poppop"

duplicate("") =⇒ ""

2

Question 1.5

(a) Does the following expression typecheck? If so, what are its type and value?

fun f(x:int):int = 10 * f(x mod 10);

(b) Given the function f as above, does the following expression typecheck? If so, what are its

type and value?

f(10);

Problem 2: Binding and Scope

You should solve the next two questions in your head, without first trying them out in SML. The

type of mental reasoning involved in answering these questions should become second-nature.

Question 2.1

Consider the code fragment:

(1) val x:int = 5;

(2) fun convolute(x:int):(int*int*int) =

(3)
let

(4)

val y:int = let

(5)

val x:int = 2

(6)

val y:int = 7*x

(7)

val y:int = 3*y

(8)

val x:int = 100

(9)

in

(10

y

(11)

end

(12)
in

(13)

(x, y, x)

(14)
end;

(15) convolute(17);

(a) To which value is the identifier x in line (6) bound? Briefly explain why.

(b) To which values are the two identifiers x in line (13) bound? Briefly explain why.

(c) To which value is the identifier y in line (13) bound? Briefly explain why.

(d) What is the value returned by the function call in line (15)? Briefly explain why.

Question 2.2

Consider the code fragment:

(1) val k:int = 7;

(2) fun diff(m:int, n:int):int = (m - n) mod k;

(3) val k:int = 10;

(4) val d:int = diff(35, k);

What is the value of d? Briefly explain why.

Problem 3: Recursion and Induction

One of the basic techniques you will need to master quickly in this course is the ability to express

iterative ideas recursively. This problem gives you some practice doing so.

Question 3.1

Consider the problem of adding up the values of some function f(x) evaluated on the first k

positive integers:

f(1) + f(2) + + f(k) withk ≥ 1.

Implement a recursive function sum: int * (int->real) -> real that computes this sum.

For instance,

sum(1000, fn (n:int) => 1.0 / (real (n*n))) =⇒ 1.644 (approximately).1

You should assume and state in your specifications that k ≥ 1.

Question 3.2 (You can skip this one)

Using induction on k, prove that your code for Question 3.1 correctly implements the function

sum as specified, that is, sum(k, f) ==> f(1) + ... + f(k).

Be sure to state the following four items clearly before you start working on the details of your

proof:

1. The overall Theorem.

2. The Base Case.

3. The Inductive Hypothesis.

4. What you are trying to prove in the Inductive Step.

Also, state clearly where you use the Inductive Hypothesis in the proof of the Inductive Step.

1You probably remember from high school that
∞

n=1 1/n2 = π2/6, which is approximately 1.6449340668.

Question 3.3

Let us make the problem marginally more complicated. Instead of adding up the values of f

obtained on the first k integers, let’s use an indexing function ix to tell us which integers to pass

to f. Specifically, implement a function sumix: int * (int-> int) * (int->real) -> real

such that sumix(k, ix, f) =⇒ f(ix 1) + f(ix 2) ... + f(ix k).

For instance, sumix(k, fn (i:int) => i*i, f) =⇒ f(1) + f(4) ... + f(k2),

and therefore: sumix(6, fn (i:int) => i*i, fn (n:int) => real n) =⇒ 91.0.

Once again, you should assume and state in your specifications that k ≥ 1.

HINT: There is a short fairly elegant solution that uses the function sum.

Problem 4: Largest Factor

A positive integer k is said to be a factor of another positive integer n if k divides evenly into n.

Said differently, k is a factor of n if n can be written as the product n = k ∗ m for some integer

m.

A given integer n may have many factors or very few. Note that 1 and n are always factors

of n. In some cases (if n is prime) these are the only factors.

Write a function maxfactor : int -> int such that maxfactor(n) returns the largest

factor of n less than n itself. For instance,

maxfactor(17) =⇒ 1

maxfactor(100) =⇒ 50

maxfactor(180469) =⇒ 719

You should assume (and state in your specifications) that n > 1.

You will probably want to define an auxiliary recursive function locally within the body of the

function maxfactor. Be sure to write full specifications for that function as well as maxfactor.

