
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Chapter 4

Partitioning
and Divide-and-Conquer Strategies

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.1

Partitioning
Partitioning simply divides the problem into parts.

Divide and Conquer
Characterized by dividing problem into sub-problems of
same form as larger problem. Further divisions into still
smaller sub-problems, usually done by recursion.

Recursive divide and conquer amenable to parallelization
because separate processes can be used for divided parts.
Also usually data is naturally localized.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.2

Partitioning/Divide and Conquer
Examples

Many possibilities.

• Operations on sequences of number such as
simply adding them together

• Several sorting algorithms can often be
partitioned or constructed in a recursive fashion

• Numerical integration

• N-body problem

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.3

Partitioning a sequence of numbers
into parts and adding the parts

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.4

Tree construction

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.5

Dividing a list into parts

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.6

Partial summation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.7

Quadtree

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.8

Dividing an image

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.9

Bucket sort
One “bucket” assigned to hold numbers that fall within each region.
Numbers in each bucket sorted using a sequential sorting algorithm.

Sequential sorting time complexity: O(nlog(n/m).
Works well if the original numbers uniformly distributed across a
known interval, say 0 to a - 1.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.10

Parallel version of bucket sort
Simple approach

Assign one processor for each bucket.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.11

Further Parallelization
Partition sequence into m regions, one region for
each processor.

Each processor maintains p “small” buckets and
separates numbers in its region into its own small
buckets.

Small buckets then emptied into p final buckets for
sorting, which requires each processor to send one
small bucket to each of the other processors
(bucket i to processor i).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.12

Another parallel version of bucket sort

Introduces new message-passing operation - all-to-all broadcast.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.13

“all-to-all” broadcast routine
Sends data from each process to every other process

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.14

“all-to-all” routine actually transfers rows of an array to columns:
Transposes a matrix.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.15

Numerical integration using rectangles
Each region calculated using an approximation given by
rectangles:
Aligning the rectangles:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.16

Numerical integration using
trapezoidal method

May not be better!

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.17

Adaptive Quadrature
Solution adapts to shape of curve. Use three areas, A, B,
and C. Computation terminated when largest of A and B
sufficiently close to sum of remain two areas .

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.18

Adaptive quadrature with
false termination.

Some care might be needed in choosing when to terminate.

Might cause us to terminate early, as two large regions are
the same (i.e., C = 0).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.25

Gravitational N-Body Problem

Finding positions and movements of bodies in space
subject to gravitational forces from other bodies, using
Newtonian laws of physics.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.26

Gravitational N-Body Problem Equations
Gravitational force between two bodies of masses ma and mb is:

G is the gravitational constant and r the distance between the
bodies. Subject to forces, body accelerates according to
Newton’s 2nd law:

m is mass of the body, F is force it experiences, and a the
resultant acceleration.

F = ma

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.27

New velocity is:

where vt+1 is the velocity at time t + 1 and vt is the velocity at time t.

Over time interval Δt, position changes by

where xt is its position at time t.
Once bodies move to new positions, forces change.
Computation has to be repeated.

Details
Let the time interval be t. For a body of mass m, the force is:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 3.28

Sequential Code

Overall gravitational N-body computation can be described by:

for (t = 0; t < tmax; t++) /* for each time period */
for (i = 0; i < N; i++) { /* for each body */

F = Force_routine(i); /* compute force on ith body */
v[i]new = v[i] + F * dt / m; /* compute new velocity */
x[i]new = x[i] + v[i]new * dt; /* and new position */

}
for (i = 0; i < nmax; i++) { /* for each body */

x[i] = x[i]new; /* update velocity & position*/
v[i] = v[i]new;

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.29

Parallel Code

The sequential algorithm is an O(N2) algorithm
(for one iteration) as each of the N bodies is
influenced by each of the other N - 1 bodies.

Not feasible to use this direct algorithm for most
interesting N-body problems where N is very
large.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.30

Time complexity can be reduced approximating a
cluster of distant bodies as a single distant body
with mass sited at the center of mass of the cluster:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.31

Barnes-Hut Algorithm
Start with whole space in which one cube contains
the bodies (or particles).

• First, this cube is divided into eight subcubes.

• If a subcube contains no particles, subcube deleted
from further consideration.

• If a subcube contains one body, subcube retained.

• If a subcube contains more than one body, it is
recursively divided until every subcube contains one body.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.32

Creates an octtree - a tree with up to eight edges
from each node.

The leaves represent cells each containing one
body.

After the tree has been constructed, the total
mass and center of mass of the subcube is stored
at each node.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.33

Force on each body obtained by traversing tree
starting at root, stopping at a node when the
clustering approximation can be used, e.g. when:

where is a constant typically 1.0 or less.

Constructing tree requires a time of O(nlogn), and
so does computing all the forces, so that overall
time complexity of method is O(nlogn).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.34

Recursive division of 2-dimensional space

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.35

(For 2-dimensional area) First, a vertical line found that divides
area into two areas each with equal number of bodies. For
each area, a horizontal line found that divides it into two areas
each with equal number of bodies. Repeated as required.

Orthogonal Recursive Bisection

