
Control of Complex, Physically Simulated
Robot Groups

David C. Brogan
University of Virginia

Charlottesville, Virginia

March 20, 2006

Abstract

Actuated systems such as robots take many forms and sizes but
each requires solving the difficult task of utilizing available control in-
puts to accomplish desired system performance. Coordinated groups
of robots provide the opportunity to accomplish more complex tasks,
to adapt to changing environmental conditions, and to survive in-
dividual failures. Similarly, groups of simulated robots, represented
as graphical characters, can test the design of experimental scenar-
ios and provide autonomous interactive counterparts for video games.
The complexity of writing control algorithms for these groups cur-
rently hinders their use. A combination of biologically inspired heuris-
tics, search strategies, and optimization techniques serve to reduce the
complexity of controlling these real and simulated characters and to
provide computationally feasible solutions.

Keywords: Multiagent, dynamic simulation, group navigation,
herds, swarms

1 Introduction

Animated characters are needed to play the role of teachers or guides, team-
mates or competitors, or just to provide a source of interesting motion in
virtual environments. The characters in a compelling virtual environment

1



Figure 1: Images of 105 simulated one-legged robots and 6 simulated bicycle
riders.

must have a wide variety of complex and interesting behaviors and must be
responsive to the actions of the user. The difficulty of constructing such syn-
thetic characters currently hinders the development of these environments,
particularly when realism is required. In this paper, we describe one ap-
proach to populating graphical environments, using dynamic simulation to
generate the motion of characters (Figure 1).

Motion for characters in virtual environments can be generated with
keyframing, motion capture, or dynamic simulation. All three approaches
require a tradeoff between the level of control given to the animator and the
automatic nature of the process. Animators require detailed control when
creating subtle movements that are unique or highly stylized. Generating
expressive facial animations usually requires this low level of control. Auto-
matic methods are benecial because they can interactively produce motion
for characters based on the continuously changing state of the user and other
characters in the virtual environment.

Keyframing requires that the animator specify critical, or key, positions
for the animated objects. The computer then fills in the missing frames
by smoothly interpolating between those positions. The specification of
keyframes for some ob jects can be partially automated with techniques such
as inverse kinematics, but keyframing still requires that the animator possess
a detailed understanding of how moving objects should behave over time as
well as the talent to express that information through the conguration of
the character. A library of many keyframed animations can be generated
off-line and subsequently accessed in an interactive environment to provide
the motion for a character that interacts with the user.

2



Figure 2: The 13-kilometer race course from the 1996 Olympics. This graph-
ical course captures the elevation, side streets, and surrounding terrain of the
streets from Atlanta, Georgia where the race was held.

To illustrate the use of dynamically simulated characters, we created a
group of simulated human bicyclists and a group of alien bicyclists that ride
on a bicycle race course (figure 2). Our earlier results indicate 1,2 that we
can generate algorithms that support characters of different types and groups
of varying size, however, manual tuning was required to obtain good perfor-
mance. In this paper we describe automatic tuning methods and algorithms
that generate improved group performance.

2 Background

Herding, flocking, and schooling behaviors of animals have been studied ex-
tensively over the past century, and this research has stimulated attempts
to create robots and simulated characters with similar skills. Biologists have
found that groupings in animals are created through an attraction that mod-
ulates the desire of each member to join the group with the desire to main-
tain a sufficient distance from nearby characters.[1] As an example of this
attraction, Cullen, Shaw, and Baldwin[2] report that the density of fish is
approximately equal in all planes of a school, as if each fish had a sphere
around its head with which it wished to contact the spheres of other fish.
Biologists have found that herding benefits group members by limiting the
average number of encounters with predators (data summarized in Veheren-
camp ). Group behaviors also allow animals to hunt more powerful animals
than those they could overpower as individuals. The success of behaviors

3



Figure 3: The simulation system used to animate physically simulated char-
acters. The locomotion controller obtains a desired velocity from the navi-
gation controller and computes the joint positions that will achieve it. The
desired joint positions are passed to the joint controller, where joint torques
are computed to eliminate errors in joint position. The joint torques are used
by the numerical integrator to compute new positions for all the character’s
body parts.

such as these in biological systems argues the merit of exploring their use in
robotic systems. An understanding of these behaviors is essential for realistic
characters in virtual environments.

3 Bicycle Simulation Locomotion Controller

The bicyclists in these groups consist of three components: physical simula-
tion, locomotion controller, and navigation controller (figure 3). The phys-
ical simulation is dened by equations of motion that represent a hierarchy
of rigid body parts and the rotary and telescoping joints that connect them.
The equations of motion for the bicyclist were formulated using a commer-
cially available package.[3] A character’s locomotion control ler computes
how to actuate its joints in order to move at a specified desired velocity.
Due to kinematic and dynamic constraints, the locomotion controllers can-
not instantaneously eliminate errors between a character’s desired velocity
and its actual velocity. These limitations to a character’s maneuverability,
or mobility constraints, are realistic and intuitive to the user, but they make
it more difficult for navigation controllers to compute a desired velocity for
each character that accomplishes group behaviors, obstacle avoidance, and
path following.

4



The locomotion control system adjusts the speed of the bicycle by moving
the bicyclist’s legs to produce a torque at the crank. The desired torque at
the crank is τ = k(v − vb), where k is a gain, v is the magnitude of the
velocity, and vd is the desired velocity (specified by the navigation controller).
The force that can be applied by each leg depends on the angle of the crank
because we assume that the legs are most effective when pushing downwards.
When the crank is horizontal, the front leg can generate a positive torque and
the rear leg can generate a negative torque. To compensate for the crank
position, the desired forces for the legs are scaled by a weighting function
between zero and one that depends on the crank position, θc :

w =
sin(θc) + 1

2
(1)

If τc > 0, the force on the pedal that the left leg should produce is

fl =
ωτc

l
(2)

where l is the length of the crank arms.

4 Bicycle Simulation Navigation Controller

The bicyclists in these groups consist of three components: physical sim-
ulation, locomotion controller, and navigation controller (Figure 3). The
physical simulation is dened by equations of motion that represent a hierar-
chy of rigid body parts and the rotary and telescoping joints that connect
them. The equations of motion for the bicyclist were formulated using a
commercially available package.12 A characters locomotion control ler com-
putes how to actuate its joints in order to move at a specied desired velocity.
Due to kinematic and dynamic constraints, the locomotion controllers can-
not instantaneously eliminate errors between a characters desired velocity
and its actual velocity. These limitations to a characters maneuverability, or
mobility constraints, are realistic and intuitive to the user, but they make it
more dicult for navigation control lers to compute a desired velocity for each
character that accomplishes group behaviors, obstacle avoidance, and path
following.

5



4.1 Computing Desired Positions

In this stage of the navigation control algorithm, a set of desired positions
is computed for each individual in the group. These desired positions corre-
spond to the herding and path following goals of the navigation controller.
Each character computes a desired position relative to its visible neighbors
that preserves a close grouping while avoiding collisions. Each individual
would be in the perfect position according to the grouping goals of the nav-
igation controller if it could move to this position instantaneously. However,
each character must also follow the path, and a desired position is computed
that satisfies this goal. In this subsection we describe the algorithms that
specify these two desired positions.

4.1.1 Desired position relative to neighbors

Each character’s desired position algorithm uses the positions of the n visible
neighbors (Figure 6) to compute a desired position, (xd(i), yd(i)), relative to
each of these characters. This position is a distance D away from visible
character, i, on the line between the two characters (Figure 6):

y =
yi − yA

xi − xA

x, (3)

where (xi, yi ) is the current position of character i, and (xA, yA ) is the
current position of character A.

4.1.2 Desired position relative to path

In addition to avoiding collisions with other individuals in the group, the
characters must also ride along a path. The path is constrained to be on a
plane, but it is free to twist left and right. The center of the path is modeled
as a Catmull-Rom spline and the path edges are 5.0 meters to either side of
the center.

4.2 Computing Desired Velocities

The desired velocity algorithm must combine a characters desired positions,
current state, neighbor velocities, and the user-specied nominal velocity to
compute an appropriate desired velocity. This desired velocity must preserve
the character’s balance while eectively moving towards the desired positions.

6



Therefore, the navigation control algorithm must take into account each char-
acters physical qualities and locomotion controller. For example, human and
alien bicyclists possess dierent mass distributions, which in turn affect how
these characters must compute velocities to eliminate position errors. The
navigation controller requires that the desired velocity algorithms be tuned
to account for unique attributes of each character.

4.2.1 Desired velocity for herding

The desired velocity algorithm first determines a desired riding direction
and speed that will eliminate the error in position, (ex, ey ), between the
character’s current position and the desired position relative to its neighbors,
(herdx, herdy ):

ex = herdx − xey = herdy − y (4)

The character’s desired riding direction is:

herdyaw = arctan
ẏ + kpey + kdėy

ẋ + kpex + ėx

, (5)

where (ẋ, ẏ) is the characters current velocity and the spring gain, kp , and
damping gain, kd , are multiplied by the character’s error in position and the
velocity of the position error, respectively.

5 Results and Discussion

Results reported elsewhere[1, 2] indicate that these navigation controllers are
robust to group size and character type. The controllers generate groups of
human bicyclists as they avoid obstacles and ride along a path. The results
verify that distributed navigation controllers can be used with the locomo-
tion controllers of physically simulated characters to generate goal-oriented
behavior. However, the unique dynamic abilities of each character impose
limitations on the characters ability to react to the environment. The naviga-
tion controllers described in this paper partially account for these variations
by performing simulated annealing tuning experiments for the herding gains
and the path following look-ahead time. Additional manual adjustments
must be made to prevent the navigation controllers from specifying unrea-
sonable desired velocities to the locomotion controllers.

3

√
x + y

e = mc2

7



The equation above is the root of the universe.

Appendix A. Tables

Table 1: The distance from the center of mass of each link to the distal and
proximal joints in x, y , and z . A positive distance along the y axis refers to
a location on the left side of the body; a negative distance refers to the right
side. The z axis is vertical and the x axis is positive in the direction that the
model is facing.

Link COM to Proximal COM to Distal
(x, y, z m) (x, y, z m)

Torso to neck 0.012 0.0 0.32
Torso to waist 0.012 0.0 -0.32

Head -0.009 0.0 -0.064

Table 2: Human model’s rigid-body parameters. The moments of inertia are
computed about each link’s COM

Link Density Mass Moment of Inertia
(g/cm3 (kg) (x, y, z kgm2)

Head 1.17 5.89 0.030 0.033 0.023
Torso 1.01 29.27 0.73 0.63 0.32

Upper Leg 1.04 8.35 0.15 0.16 0.025

References

[1] D. C. Brogan and J. K. Hodgins, “Group behaviors for systems with
significant dynamics”, Autonomous Robots 4, pp. 137-153, 1997.

[2] D. C. Brogan, R. A. Metoyer, and J. K. Hodgins, “Dynamically simu-
lated characters in virtual environments”, IEEE Computer Graphics &
Applications 18, pp. 58-69, September/October 1998.

8



[3] D. E. Rosenthal and M. A. Sherman, “High performance multibody sim-
ulations via symbolic equation manipulation and kane’s method, Journal
of Astronautical Sciences 34(3), pp. 223-239, 1986.

[4] John December and Neil Randall, The World Wide Web Unleashed,
Sams Publishing, 1994.

[5] Helmut Kopka and Patrick W. Daly, A Guide to LATEX, Addison-
Wesley Publishing Co., Inc., 1993.

[6] Nikos Drakos and Ross Moore, LaTeX2HTML Translator Version 99.2
beta8(1.43), Macquarie University, Sydney, 1999.

[7] Walker, Janice R. et al., ”The Columbia Guide to Online Style”, 1995.
http://www.columbia.edu/cu/cup/cgos/idx basic.html (August 11,
2000)

9


