COMPUTER SYSTEMS RESEARCH
Program Iteration Report 2nd Quarter 2006-2007
Running version, planning, testing, and analysis of your program

Name: __________________________________, Period: _____, Date: ______________

Project title or subject: _______________________________

Language(s) and other software tool(s): ______________________

2nd quarter iteration # _____

Which lifecycle model for software development currently best fits your project (see below): ___

What type of research model best exemplifies your project (see Pasteur's Quadrant below): ________________________________

Lifecycle models:

· Spiral Model - breaks a software project up into miniprojects. Each miniproject addresses one or more major risks until all the major risks have been addressed. Each iteration moves your project to a larger scale. Each iteration has similar steps:

1. Determine the objectives for the iteration

2. Identify risks that exist at this level of your project's development

3. Evaluate or think about alternative paths or methods you could take

4. Develop deliverable(s) for that iteration and verify they are correct.

5. Analyze your results so far.

6. Plan for your next iteration, and commit to an approach for the next iteration

· Evolutionary Prototyping - develop the system concept as you move through the project. You may begin by developing the most visible aspects of the system. Evolutionary prototyping is especially useful when requirements may change throughout your project. It's also useful when you're unsure of the optimal architecture or algorithms to use. Disadvantage - it's impossible to know at the outset of the project how long it wll take to create an acceptable project. You don't know how many iterations you'll have to go through. But, steady signs of progress can be seen, that's good.

· Staged Delivery - you show software results in successively refined stages. Unlike evolutionary prototyping, when you use staged delivery, you know exactly what you're going to build when you set out to build it.

· Evolutionary Delivery - straddles the ground between evolutionary programming and staged delivery. You develop a version of your product, show it to your "customer", and refine the product based on customer feedback. How much evolutionary delivery looks like evolutionary prototyping depends on the extent to which you plan to accommodate customer requests. If you plan to accommodate most requests, evolutionary delivery will look a lot like evolutionary prototyping. If you plan to accommodate few change requests, evolutionary delivery will look a lot like staged delivery.

Examples of modern terminology:

· Scrum - an iterative, incremental process for developing any product or managing any work. It produces a potentially shippable set of functionality at the end of every iteration. more information, also see wikipedia site

· Agile - "Individuals and interactions over processes and tools", wikipedia info

· Extreme Programming - also known as XP (not Windows XP!), wikipedia info..."Like other agile methodologies, Extreme Programming differs from traditional methodologies primarily in placing a higher value on adaptability than on predictability."

Research models:

(from Pasteur's Quadrant (1997) Donald Stokes)

· Pure basic research, performed with the goal of fundamental understanding (such as Bohr's work on atomic structure)

· Use-inspired basic research, to pursue fundamental understanding but motivated by a question of use (Pasteur's work on biologic bases of fermentation and disease)

· Pure applied research, motivated by use but not seeking fundamental understanding (such as that leading to Edison's inventions)

· Applied research that is not motivated by a practical goal (such as plant taxonomy or cladistics and computational paleontology – Latimer)

Description of this iteration:

1. Problem definition - Clear statement of the problem this iteration is supposed to solve, and also perhaps how this fits into the larger scale, or longer term, problem you are solving, investigating, or analyzing with your project.

2. Requirements (see Software Construction link for requirements list) - describe in detail what this iteration is supposed to do. You may want to relate this short requirement to longer term requirements of your project or system.

List specific requirements you have for this iteration:

3. Architecture of your program - software architecture is the high-level part of software design, the frame that holds the more detailed parts of the design (see the link to Software Construction for architecture list

4.
Outline your organization for this version of the program. Determine what types of inputs the program expects, what algorithms and processing the program is doing, and what output(s) you expect.

· Input(s) - try to test a variety of kinds of inputs:

· Algorithms and processing internal to the program (you can paste in code and explain):

· Types of output you expect, what do you expect the program to do, how should the program behave based on your input and algorithms?

· Tests - how are you validating the success or failure of this iteration. What pieces of code, functions, classes, algorithms are you checking and what specific tests are you doing?

5. What do you think your focus will be for the next iteration of your program and project?

�<!--
- A problem definition defines what the problem is without necessarily referencing possible solutions -
(from <i>Code Complete:</i>)
Good problem definition example: <i>"We can't keep up with orders for the Gigatron"</i> - it sounds like a problem
Not so good problem definition example: <i>"We need to optimize our automated data-entry system to keep up with orders for Gigatron"</i> - doesn't sound like a problem, sounds like a solution-->

�Requirements quality Are the requirements written in the user's language - are they clearly written? Does each requirement avoid conflicts with other requirements? Do the requirements avoid specifying the design? Are the requirements at a fairly consistent level of detail? should any be specified in more detail? in less detail? Are the requirements clear enough to be turned over to an independent group and still be understood? (as if another group would be doing the construction or programming) Is each requirement testable? Are possible changes to the requirements specified, the likelihood of each change?

�<!-- Users of your program involved in giving you feedback on the running and analysis of your program's results (you may not have any besides yourself).<pre></pre>If you do have users: <p>Purpose of this version. What are you trying to do with this iteration of your project's program? Clearly define the scope of this version of the program.<pre></pre>-->

�<!-- By the end of school year, what do you hope to have as a final version of your program for 1st quarter? Include what you expect to be demonstrating with this final 1st quarter version?<pre></pre>-->

