

Senior Tech Lab

Research Project and Writing

Computer Systems Lab

2007-08

September 2007

TJHSST Science and Technology Laboratories

Thomas Jefferson High School for Science and Technology

Fairfax County Public Schools, Fairfax, Virginia

Copyright Information

You are encouraged to reproduce these materials in whole or in part for use within your educational institution provided appropriate credit is given. You may distribute these materials to other institutions or representatives thereof only if the entire work is transferred in its complete, unaltered form, either as the original Microsoft Word files or as an original, high quality printout.

Senior Research Computer Systems Lab — First Quarter 2007

Section One – Intro to Computer Systems, Picking a Project, your Portfolio
Page

Introduction to Computer Systems lab research .
One- 4

Picking a research area .. .
One- 5

 Research models, systematic approaches, project examples
One - 6 to7

 Your research portfolio .
One - 8

Section Two – Logs, Project Estimates, Iteration Reports, Research Reports

Logs .
One-9

Project Estimates .
One- 10

 Iteration Reports .
One- 11

 Research Reports .
One- 12

Section Three – Elements of your portfolio

Project Proposal .. .
One-14

Research Paper .. .
One-15

 Project Poster
One-16

 Project Presentation
One-17

 Final running version of program .
One-18

Section Four – Software Engineering Aspects

 Lifecycle planning models .
One-22 to 24

Software requirements.
One-25

Architecture requirements .
One-26

Software Testing .
One-27 to 28

Senior Research Project, Computer Systems Lab

This year's goal is to pursue a research project in a computer science or computational science concentration area. Example areas are:

 * Artificial intelligence and machine learning, data mining

 * 3D computer graphics, virtual realities

 * Evolutionary programming, complex systems, agent based modeling, MASON agent based toolkit

 * Computer vision and image processing, steganography, edge detection, object recognition

 * Parallel, distributed computing, evolution of MPI (Message Passing Interface)

 * Computational science: bioinformatics, chemistry, linguistics , even paleontology

 * Applications involving tools such as Matlab or BLAST

 * Programming language compiler design

 * Software engineering, technologies, practices of project management, unified modeling language

 * Projects to benefit the school and community, TJForge Iodine (student Intranet)

 * Computer systems and networks, topologies of clusters (for system administrators)

 * Other areas, such as computer music

The TJHSST Computer Systems Laboratory supports student research in theoretical and applied computer science and computational science. As can be seen from the list above, projects fall within a broad spectrum of computer science areas spanning computer graphics, artificial intelligence, computer vision, high performance computing, grid/distributed computing, computational science applications, agent based modeling of complex systems including social complexity, software design, and theoretical algorithmic development of ideas as varied as tree data structures to ant colony search optimization. Our Computer Systems Laboratory emphasizes a multilingual computer language community, featuring C/C++, Java, Python, Ruby, XML, PHP, Perl, MySQL, JavaScript, Tk, OpenGL, Fortran, Lisp, and MASON (Multi-Agent Simulator of Neighborhoods).

Picking a Research Area

Computer Systems Lab Research Projects Overview

Research areas:

Artificial Intelligence and Machine Learning: Can I write a program that can learn on its own to accomplish a particular task or solve a problem? See evolutionary and genetic programming, neural networks and Bayesian decision probability. Languages include C/C++, Java, Python/Ruby, Common Lisp/Scheme, Prolog.

3D Computer Graphics: Can I visualize a physical situation realistically with a computer program? A good 3D language is OpenGL.

Computer Vision: Can a computer program see, distinguish, and analyze objects in an image? Topics include edge detection, object recognition, image processing, and steganography. Languages are C/C++, Java.

Modeling of Complex Systems, Computational Sciences (Computational Biology, Bioinformatics, Chemistry, Linguistics, Economics, etc.,even Paleontology), numerically and graphically: Can I simulate a complex environment and mathematical model. How closely can my simulation match and predict reality? Languages include C/C++, Java, Perl, and packages such as MatLab and BLAST

Evolutionary programming, agent based modeling: Can a computer program simulate the evolution of a complex system. The evolving actors are “agents”, each carrying an array of character attributes. A simple example is Conway's Game of Life, Schelling's Neighborhood, or Sugarscape. Languages to use are C/C++ (see Swarm) and Java (see MASON – MutliAgent Simulation Toolkit, RePast, Ascape, Breve – 3D simulator. Also see NetLogo for good examples of project models)

Distributed and Parallel Programming methods for high performance computing: For a complex programming task, can I take advantage of processing in parallel across multiple processors? Languages are C, Fortran, MPI – Message Passing Interface, other distributive programming systems.

Software Design, Object Oriented Programming: What are optimal techniques for large scale applications with large user bases and a need for long term modifications and updates. Languages are C++, Java, Smalltalk, OO languages.

Other specialized areas such as Computer Music, How can a computer program be used to compose music or generate/read music notation? See Lilypond music notation language.

In what computer science theoretic or applied area do you have an interest?

Discussion: Research Models and Systematic Approaches

What type of research are you in? Do you prefer theoretical or applied scientific study?

Research models:

1. Pure basic research: Can I create a logarithmic, randomly accessible data structure? Can I create a hybrid machine learning system?

2. Use-inspired basic research: Can I create a 3D visualization package for graphics modeling for a Physics course? Can I create a program that can learn on its own how to translate text from one language to another for people to obtain web-based translations?

3. Pure applied research: Can I write a student Intranet program for a high school? The program needs to be robust and maintainable by future students for many years.

Your senior research project will be complex and developed over a long period, a year for classroom students. How will you organize the long term development of your project?

Systematic approaches:

1. Spiral Model - breaks a software project up into miniprojects. Each miniproject addresses one or more major risks. Each iteration moves your project to a larger scale.

2. Evolutionary Prototyping - develop the system concept as you move through the project. You may begin by developing the most visible aspects of the system. Useful when requirements may change throughout your project or when you're unsure of the optimal architecture or algorithms to use.

3. Staged Delivery - you show software results in successively refined stages. When you use staged delivery, you know exactly what you're going to build when you set out to build it.

As you develop and progress through your project, you'll need to test and analyze regularly the validity of your program.

Software testing and analysis has these example approaches:

1. Dynamic testing: Random tests, Structural tests, Functional tests, Path and branch testing

2. Process Modeling - Finding a formula to verify and validate your program's behavior,

3. Requirements and Specifications - Defining requirements and the specifications for verifying these requirements

Sample projects from previous years

Example projects by category:

 Software design, application oriented

1. Student Intranet - A new platform is developed implementing paradigms in object-oriented programming and collaborative development.

2. NetChat – A modular Internet communications protocol.

3. Project IOTA – Integrated Online Teacher Assistant

 Theoretical and algorithm studies

4. Ant Colony Optimization (ACO) - Finding optimal paths in a complex network. ACO is an algorithm that is used to find near optimal solutions to NP problems.

5. Algorithm Efficiency and Data Structure – investigating a new tree data structure

 Machine Learning, computational studies

6. Machine Learning and Computational Linguistics – using statistical processes in text translation.

7. The Use of Genetic Algorithms in Machine Learning; Applications to Othello

8. Evolution of Darwin's Finches: Simulation using Genetic Algorithms

 3D Computer Graphics

9. 3D Visualization Package - Develop a 3D graphics simulation engine designed to simplify the task of coding 3D simulations, while still giving the developer control over every aspect of the rendering and simulation process.

10. Random Virtual Landscape Generator,also Random Terrain and Non-fractal Urban Environment Generation

11. Portal to the Past - a Virtual Museum Tour

 Evolutionary modeling, agent based simulation

12. Evolution Simulator - Simulate the evolution of different organisms within an environment. There will be a genetic variability that will allow the organism species to evolve, or die out. The hope is a demonstration of natural selection, showing that after many generations the collective gene will be more advanced than the original.

13. Multiagent Modeling of Societal Development and Cultural Evolution

Your Portfolio

Over the course of this year you will complete a portfolio encompassing record keeping and planning – your logs and iteration reports, written expertise - your research paper, and visual and verbal portrayal of what you are researching – your poster and oral presentations.

Your research portfolio consists of

 * project proposal

 * formal research paper in support of your project, using LaTeX to generate a PDF/PS version

 * digital poster of the project

 * oral presentation with slide presentation

 * final running version of your program

 * maintain a record of daily/weekly logs and iteration reports (planning, design, coding, testing in
repetitive cycles), use of a log book (composition notebook)

You are encouraged to:

 * become involved in the following science competitions: Intel Science Talent Search and Science Fair,
the TJ Science fair, Siemen's Competition, SEAP (Science and Engineering Apprentice Program)

 * write for publication in TJ's Teknos Journal

Record Keeping: Logs, Project Estimates, Iteration Reports, Research Reports

Daily logs:

 You're responsible for keeping a record each day that details what you accomplished.

 You can use your own format for these logs, but they need to be detailed, more than just a few

general sentences. Sample log sheets are provided.

 Questions for each day include:

 * Plan – what is your plan/goal this week, what is your plan/goal for today? Are you writing new

code or modifying existing code? What is your design, are you writing/working with any

particular functions, modules, or classes? This week are you planning any tests of portions

of your code?

 * Program code you wrote - is this new program code or code modification trying to fix already

existing code. Paste in code segments, if necessary. Include explanation of any algorithms

or processes you spent time on.

 * Analysis - what kind(s) of analysis, if any, of your project and program code did you do

today?

 * Code testing – how did you test portions of your code? Write code that specifically tests

other code.

 * Summarize what the program is doing. How has it grown or changed since your last report?

What are example inputs and corresponding outputs. Give an explanation of your current

running program's behavior.

 * Summarize other types of work you may have done today. For example, any specific research

or learning about your project area. Include url links and necessary explanations.

Project Estimates

Program estimate(s): Each quarter you'll need to estimate, looking ahead, what you think you can accomplish for that quarter. Sample project estimate sheets specify the following:

* Clear statement of the problem(s) or goal(s) that you estimate your quarter version will solve

(the goal do you intend to achieve for the particular quarter).

* How does this fit into the larger scale problem or goal you are trying to solve or investigate with

your project or system for this year. Looking ahead to next quarter, estimate what your

project can achieve, the state of your project could be, for the next quarter.

* Software Requirements for the quarter (see below)-

* Architecture of your program for the quarter (see below). Software architecture is the high-level

part of software design, the frame that holds the more detailed parts of your program's

design.

Outline your organization for this quarter's version of your program's code and project. Determine types of inputs your program will expect, the algorithms and processes your program will work with
this quarter, and specific kinds of output(s) you will expect.

 * Types of input(s) you'll expect to deal with 1st quarter (try to test a variety of kinds of inputs):

 * Algorithms and processing internal to the program that you expect to learn and program this quarter:

 * Types of output you expect to analyze. What do you expect the program to do, how should the

program behave based on your input and algorithms?

 * Tests - how will you validate the success or failure, how will you analyze your research project
during
this quarter. What pieces of code, functions, classes, algorithms are you checking and what

specific tests are you doing?

 * What is the focus of the first iteration of your program this quarter?

Iteration reports

Each iteration of your project's development works through the following cycle:

Plan: What is the goal or needs of this iteration of the project?

 What is/are the expected outcome(s) for this iteration?

Design: What is the design for this iteration/version of your project

 or program? You may want to write the design in some kind of "high level"

 pseudo-code

Code: Any coding of your plan/design for this iteration?

 Coding standards - format your code to agreed coding standards

Testing – You need to validate a measure of success for this iteration's code

 What are your tests that have used to check the success/lack-of-success for this iteration?

Users - Are there any users of your project iterations?

Anyone helping you define particular requirements or directions for your project?

Example detailed description of an iteration report:

Problem definition - Clear statement of the problem this iteration is supposed to solve, and also
perhaps how this fits into the larger scale, or longer term, problem you are solving, investigating, or
analyzing with your project.

Requirements (see the requirements list) - describe in detail what this iteration is supposed to do.
You may want to relate this short requirement to longer term requirements of your project or
system. List specific requirements you have for this iteration:

Architecture of your program - software architecture is the high-level part of software design, the
frame that holds the more detailed parts of the design (see the Software Construction link for
architecture list

Outline your organization for this version of the program. Determine what types of inputs the
program expects, what algorithms and processing the program is doing, and what output(s) you
expect.

 * Input(s) - try to test a variety of kinds of inputs:

 * Algorithms and processing internal to the program (you can paste in code and explain):

 * Types of output you expect, what do you expect the program to do, how should the program

behave based on your input and algorithms?

* Tests - how are you validating the success or failure of this iteration. What pieces of code,

functions, classes, algorithms are you checking and what specific tests are you doing?

* What do you think your focus will be for the next iteration of your program and project?

Research Reports – learning the background of your reaserch, reading other people's work.

 1. Identify a research area that relates to your project and find an interesting project in your research area
of interest. Example computer science research areas (no particular order to these):

* University CS department examples

* Computer Graphics, 3D realism, Computer Vision

* Artificial Intelligence: Computer Music, Data Mining, Machine Learning, Robotics applications,

Evolutionary programming

* Systems and Languages: Computer Architecture, Databases, Distributed Systems, Formal

Methods and Software engineering, Networking, Operating Systems, Parallel Systems,

Programming Languages

* Theory: Algorithms, Complexity Theory, Semantics

* Computational Biology, Bioinformatics, Computational Chemistry, Linguistics, Paleontology

* Human-Computer Interaction: Cognitive Modeling

* Educational Technologies: Object oriented techniques

* Language Technologies: Computer Aided Language Learning, , Computational Linguistics,

Informational Retrieval,Machine Translation, Speech

* High Performance computing

* Software engineering

* Agent Based modeling, social science modeling (see MASON toolkit)

* Open Source/Collaborative projects such as found on SourceForge

* Applications Software such as Matlab or BLAST (BLAST is used in Biotech: Basic Local

Alignment Search Tool)

* Multi-agent Modeling using MASON, Netlogo, Swarm, Repast, or similar software; Example

current project with GMU/Smithsonian - Inner Asia BC civilization modeling (will use MASON)

 Which research area(s) is a match for the project(s) you are interested in?

 Locate a project(s) that is similar to your interest.

* Title of the project(s), Abstract of this project (in several sentences the focus and goal of the project(s)).

* What is the analysis being done, how is the project analyzed for success?

* What are the results and conclusions? What are areas for continued research? (if this can be

determined)

 * Link to this project(s) and to the paper (if a link exists to the paper):

* What software (computer languages) was used in this project you've found (if this information is

available.

Elements of your portfolio:

Project Proposal

Research Paper

Project Poster

Presentation

Final running version of your program

Computer Systems Project Proposal

1. Title of the Project and Problem Statement, introduce the purpose and scope of your research project.

2. Purpose: Why is the project worth doing; why is it a good topic for the Computer Systems Lab?

Who will be interested in the results; how can the results be applied?

3. Scope of Study. Describe the overall bounds of the work that will be involved, e.g., the research or data that will be required, and the variables that will need to be programmed, and the expected results. Minimize difficulties in finishing your projects because of complexities encountered. You may
have to narrow your research/project objectives. If your project idea is too extensive, select a more
modest piece of your original project idea to work on.

4. Background and review of current literature/research in this area.

5. Demonstrate that you have looked into and read about the background area of your topic. What kinds of research have been done before in this area? How have others gone about trying to solve similar problems you are interested in?

Is there a "state of the art" today for your area? In what ways may your approach build on and vary from previous work that has been done in your project area? sf

6. Procedure and Methodology

 Show that you clearly understand your task and have a logical time plan for your research and
reading, design for implementation, programming of your implementation, and testing phases of
your project. Identify resources you will need. What tasks will have to be accomplished to meet
your objectives? What materials and programming language(s)/tools will be necessary?

What visuals can you construct - charts and graphs that aid in portrayal of the information your
program is generating. What input data may be needed, and how will you collect this data?

Testing: Methods you'll use to test and analyze your program's performance
or validity

o Dynamic testing: random types of input to your program, specific structural and functional

testing
- how you verify particular sections of your program are working correctly, pick

particular inputs that test internal paths of performance of your program

 o Process modeling: determine mathematical formulas that can be used to validate the

performance of your program, check the predictive quality of your program. For example,

how well does your program model existing or expected phenomena, and how well your

program may be used to predict behaviors based on future input

 o Requirements and specifications: Defining requirements for your program and the structure

of your program, outlining these requirements in written form, and defining specifications

you can use for verifying how well your actual program meets these requirements.

 How will you write up your time lines for project development (for example - Gantt charts)?

 7. Expected Results and Potential Value to Others

 What results do you expect to obtain from your project?

 How will the final results and analyses be presented (include visuals such as graphs and charts)?

 Can you think of particular contributions these results can give to future researchers?

Your Research Paper

Title Page (title, name, date) Include "Computer Systems Lab, 2006-2007"

Abstract

· Purpose/Goal of the project, this is a summarization paragraph, usually between 75 and 150 words long. The abstract clearly states the specific purpose of this research project, along with a brief elaboration on the method of research and results expected or achieved.

Introduction

· Rationale of the project and a statement of problem. Write about the importance of topic and reiterate the purpose and goal. Expand upon the subject and purpose of the project as clearly as possible, giving the reader a good idea of what to expect.

· Introduce and begin detailing the research being addressed and the approach to this project's problem or research. Is there a relevance as to why this problem, application, or research is important?

· Clarify the scope of this project; how far are you intending to go with this paper?

Background

· Provide a context for this project and describe other examples of projects or research that pertain to your area. Discuss how these provide a basis for your project. Be clear, concise, and as thorough as possible in summary of this previous work and background information.

· What relevant theory or algorithms pertain to this project?

· The two purposes of this section are to prepare the reader to understand your project and to highlight your expertise on the topic, you should review several pertinent sources to provide background information on the topic. You should also briefly define terms and describe specific software, algorithms and theory used in the study.

· All information in this section should be cited if necessary.

Development Sections

· Your actual program/project, what you are actually doing/coding this year

· Provide requirements, overview, limitations, and your development plan

· Specify the criteria by which the project was deemed successful. Briefly outline the method used to create the project, noting any equipment, materials, and time restrictions.

· Iterative evaluation plan - go over the tactics and development/lifecycle model you used to assess your program's components as
they were developed.

· Research theory and design criteria - clearly and thoroughly present this project's methods, theory, and algorithms. In detail, expand upon the processes for this project and the development of your research (what you did, learned). Represent a sufficient level of difficulty, complexity, and quality.

· Testing and analysis: Explain in detail the types of tests conducted in this project. (You're doing more than just writing a program and seeing if it works or not).

· Thoroughly and clearly explain and analyze are the tests that you conducted. These tests need to have a point, a focus. What points are you getting across with your tests and analysis.

· List performance characteristics of the project. Include properly labeled tables and graphs as well as statistical calculations if appropriate.

· Visual representation of data and results. In addition to portraying your information with words use visual representations of your project's structure, test results, algorithms.

· Developmental Procedures: Explain all steps clearly. Include diagrams when appropriate. The completed product is tested for performance and then analyzed and re-designed if necessary.

Results, Discussion, Conclusion, Recommendations ("End matter" for your paper)

· Re-state your project's purpose. Summarize the project requirements. Was the project successful?

· Describe the importance/applications of the product. Suggest recommendations for further study.

· Describe the results of your project. What has been the point of your project, and what does it all mean?

· Larger Purpose - How can your research ideas be used by others and what are possible benefit(s) or values for other people?

· Provide thorough and extensive summary analysis of procedures you've experimented with and tests you've done. Expound upon the results you've seen and what you've learned through this project's development. Provide specific, detailed, concise yet thorough discussion of your results and what you've learned.

· What are your conclusions and recommendations? Be specific. Are your conclusions superficial (maybe not much was done this year) or are the conclusions of substance (this is an academic year's worth of work and study)?

Appendices Extra stuff:

· Tables, data

· Code

 Literature Cited (8-10 minimum, hard copy attached to paper)

 * Correct format, no wikipedia

 * Source copies attached

 * In-text citations match Literature Cited list

 * In-text citations appropriately placed

 * Write your own Bibliography section. Use this shell (.tex), resulting .pdf

Acknowledgements

Poster

Size of the poster:

· Poster for our room: The dimensions are 18" wide by 24" high (width to height ratio of 3 to 4)

· Poster for Mentorship and Science Fair: Dimensions are 48" wide by 36" high (4 to 3)

 * The digital printer's paper is 24" wide. In CAD lab there is a 36" wide plotter.

 * Options to print:

 o 1 piece in landscape, use the 36" plotter in CAD

 o 3 pieces: Center section 24" wide by 36" tall; 2 side sections 12" wide by 36" tall each.

Use the 24" plotter for Science and Tech.

Title, Author, TJHSST Computer Systems Lab 2007 – 2008

Abstract: describe the problem, purpose and scope of your project

Background and/or Introduction paragraph(s)

Description of your procedures and methods

Results and conclusions (depending on which quarter we're in, this may be your expected results)

Visual display of information: for example a chart, graph, and/or screenshot

Meaningful Headings for each section of your poster

Export your poster format to PDF/PPT

10 second reading of your poster - title, abstract, headings, and visuals portray information about your project quickly to the reader/viewer. i.e. the viewer of the poster needs to be able to get a good idea of your project in a few seconds.

10 minute reading of your poster - a detailed communication of your project: The viewer continues reading your paragraphs, charts, and visuals in order to learn detailed information about your research.

Limited space - on your poster to portray all of this information; communicate as much information as possible in a small amount of space.

Variety of formats for the communication of information: textual (your headings and paragraphs) and visual (charts, screenshots, etc) Font size needs to be small enough to fit on the poster yet large enough and clear enough to be read from a few feet away

Visually interesting The layout of your poster should be interesting visually yet maintain a professional quality.

Presentation slides for oral reports

Slide components

 1. Title page and author 1 slide

 2. Abstract, introduction, background 3 - 5 slides

· Purpose/subject/goals of the project

· Scope of your study and project

· Types of results you expect

· Similar projects others have done or are currently doing - review of similar research or work in this area.

· How have others gone about trying to solve similar problems?

· is there a "state of the art" today?

· are there ways in which your approach builds on or varies from other's work?

· are you trying to recreate a similar project on your own. (this is okay)

 3. Development section, theory, procedures, algorithms you're using 5 - 7 slides

· Explain procedures/methods you're using to accomplish your objectives

· Summary time line or overview of how your project is progressing

· Demonstrate a design and analysis of your research project - in what ways are you testing your project.

· What programming language or tool are you using

· Describe algorithms you are using

· What kinds of problems have you run into

 4. Results and conclusions 2 - 3 slides

· Present results that you are learning

· Use visuals such as graphs/charts, screenshots, UML diagrams (dia-gnome)

· Analysis - give a summary of what testing has shown you.

· Describe main points that you have learned

· How has your original hypothesis/plan changed?

Reminder to use visuals - for example screenshots/sample runs, data charts/graphs, UML diagrams

Running Version of Your Program,

example report form 2007-2008

How to run your demo: Describe specifically what files are needed and the command(s) necessary to run your program.

Your program is running, now what? List test input(s) for the user to interact with your program. Specifically what should the user expect to happen?

What about user input errors? Are there incorrect user input(s) that your program handles?

What is the programming doing, demonstrating, or analyzing? What is the user looking for in order to understand what you've been studying and developing with this project?

How has your program evolved during this time period? By the end of the next time period, or school year, what do you hope to have as a final version of your program in relation to this current version? What will you demonstrate during your final presentation?

Project Description, example format

Project Description (also sometimes called Project Abstract)

Student: Edward Delacruz

Firm: U.S. Army Topographic Engineering Center (TEC) (only necessary for mentorship projects)

Mentor: Mr. Thomas Jorgensen (only necessary for mentorship projects)

Title: Development of Three-Dimensional Terrain and Visualization Software

Background:

The primary purpose of TEC is to research and develop topographic techniques and equipment to aid soldiers in the field. The creation of terrain visualization software allows the commander to view realistic three-dimensional representations of probable battlefields. An area of "flying" over the terrain. Both dynamic and static three-dimensional models of land vehicles and aircraft can be inserted into this virtual environment to give a realistic feel to the region. Because the current system only allows for the display of actual elevation data gathered by traditional methods, the objective of the project is to develop a software program which did not rely on existing digital topographic data, but would allow the user to construct the terrain.

Description:

Construction of a user-defined terrain requires some sort of interface that would translate human terminology for land features into numerical data. The computer uses a Digital Elevation Matrix (DEM), a two-dimensional array which represents the terrain in a coordinate system. The row and column index numbers are the x and y coordinates, and the data within the element is the elevation data or the z coordinate. The computer links these "flag" points to create a surface. In order to construct a terrain, the elements in the DEM have to be manipulated in a fashion that can translate human perception into numerical information. A critical portion of the project is to mathematically alter the DEM given user inputs such as land feature type (e.g. hills, ridges, ditches, plateaus), position, and height.

Being able to easily control construction is also a major aspect of the program. The project focuses on having mouse-based input because the keyboard can sometimes be cumbersome. The use of pop-up menus to select categorical data allows information to be effortlessly chosen. Area and positioning of land features are inputted onto an overhead-view image giving the user visual feedback on actual location and size. Red lines drawn on the overhead-view image designate the orientation of ditches and ridges while red rectangles illustrate the areas where hills and plateaus are placed. Shading of the overhead view gives the user a sense of where existing land features are located.

The final portion of the project is the creation of a visualization technique that makes the terrain look realistic. A lighting model is created that gives the terrain a smooth, shaded appearance, which can be viewed by an infinite number of perspectives using a "fly" through method. The development of a function that roughens a smooth terrain produces a natural-looking land surface.

Software Engineering Aspects

Lifecycle planning models

Software requirements

Architecture requirements

Software Testing

Lifecycle planning

(Rapid Development, p. 133) "Every software development effort goes through a lifecycle, which
consists of all the activities between the time that version 1.0 of a system begins life as a gleam in
someone's eye and the time that version 6.74b finally takes its last breath on the last customer's
machine. A lifecycle model is a prescriptive model of what should happen between first glimmer
and last breath."

 The main function of our lifecycle model is to establish the order in which your project:

 * specifies itself, what you're doing

 * prototypes and designs

 * implements (code)

 * review, test, and analyze

 * any other activities involved in your project's development

In a lifecycle model, a criteria is established to determine whether to proceed from one task to another.

Example lifecycle models (Rapid Development, p. 136) (this is from 1996, but I believe the models
continue to be relevant)

* Pure Waterfall - the "grandaddy" of all lifecycle models. It has many problems but serves as the
basis for other, more effective lifecycle models. The project iterates one time through, from
beginning to end, progressing through a sequence of steps from the initial software concept through
system testing. The project reviews at the end of each phase to determine whether it is ready to go
to the next phase. If the review determines that the project isn't ready to move to the next phase, it
stays in the current phase until it is ready to move on.

* Code and Fix - if you haven't explicitly chosen another lifecycle model, you are probably using

code-and-fix by default. "If you haven't done much project planning, you're undoubtedly using

code-and-fix. Code-and-fix gives rise to the code-like-hell approach...". When you use code and fix,
you start with a general idea of what you want to build. You might have a formal spec or you might
not. You then use whatever combination of informal
design, code, debug, and test methodologies
suits you until you have a product that's ready to release (turn in).

 Advantages of Code-and-fix: no overhead, no time necessary for planning, documentation etc

 - only pure coding is used. You jump right into coding, and show progress immediately. Code and
fix requires little expertise - anyone who has written a computer program can use it.

 Disadvantages to Code-and-fix: only works well on tiny projects, for larger projects this model

can be dangerous. Provides no means of assessing progress, you just code until you're done. It

provides no means of assessing quality or identifying risks. If you discover three-quarters of the

way through coding that your whole design approach is fundamentally flawed, you have no choice

but to throw out your work and start over. Other models would set you up to detect such a
fundamental mistake earlier, when it would have been less costly to fix.

* Spiral Model: a "risk-oriented" lifecycle model that breaks a software project up into
miniprojects. Each miniproject addresses one or more major risks until all the major risks have been
address
ed. The concept of risk is a broad one - it can refer to poorly understood requirements or
architecture, or problems in how you're going to code a particular piece of your project. Each
iteration moves your project to a larger scale. Each iteration has similar steps:

 1. Determine your objectives for this iteration

 2. Identify risks that exist at this level of your project's development

 3. Evaluate or think about alternative paths or methods you could take

 4. Develop deliverables for the iteration and verify they are correct. Analyze your results so far.

 5. Plan for your next iteration, and commit to an approach for the next iteration

 * Evolutionary Prototyping: you develop the system concept as you move through the project.
Usually you begin by developing the most visible aspects of the system. Evolutionary prototyping is
especially useful when requirements are changing rapidly. It's also useful when you're unsure of the
optimal architecture or algorithms to use.

Disadvantage - it's impossible to know at the outset of the project how long it will take to create an
acceptable project. You don't know how many iterations you'll have to go through. But, steady signs
of progress can be seen, that's good.

* Staged Delivery - you show software to the customer in successively refined stages. Unlike
evolutionary prototyping, when you use staged delivery, you know exactly what you're going to
build when you set out to build it. With staged delivery, you don't deliver the software at the end of
the project in one fell swoop.
You deliver it in successive stages throughout the project. (also
known as "incremental implementation")

* Evolutionary Delivery: straddles the ground between evolutionary programming and staged
delivery. You develop a version of your product, show it to your customer, and refine the product
based on customer feedback. How much evolutionary delivery looks like evolutionary prototyping
depends on the extent to which you plan to accommodate customer requests. If you plan to
accommodate most requests, evolutionary delivery will look a lot like evolutionary prototyping. If
you plan to accommodate few change requests, evolutionary delivery will look a lot like staged
delivery.

Choosing a lifecycle model for your project. (Rapid Development, p. 154)

Different projects have different needs, even if they all need to be developed as fast as possible. To choose the most effective lifecycle model for your project think about your answer to these
questions:

*How well do I understand the requirements at the beginning of the project? Is my

understanding likely to change significantly as I move through the project?

 * How well do I understand the architecture of my program? Am I likely to need to make

major architectural/program changes midway through my project?

 * How much reliability do I need? How much risk does this project entail?

 * How much do I need to plan ahead and design ahead during this project for future versions?

 * Am I constrained to a predefined schedule? Do I need to be able to make midcourse corrections?

 * Do I need to provide my customers (or teacher) with visible progress throughout
 the project?

 * How much sophistication do I need to use this lifecycle model successfully?

Summary of Lifecycle models:

 * Spiral Model - breaks a software project up into miniprojects. Each miniproject addresses one or more major risks until all the major risks have been addressed. Each iteration moves your project to a larger scale. Each iteration has similar steps:

 1. Determine the objectives for the iteration

 2. Identify risks that exist at this level of your project's development

 3. Evaluate or think about alternative paths or methods you could take

 4. Develop deliverable(s) for that iteration and verify they are correct. Analyze your results so far.

 5. Plan for your next iteration, and commit to an approach for the next iteration

 * Evolutionary Prototyping - develop the system concept as you move through the project. You may begin by developing the most visible aspects of the system. It's also useful when you're unsure of the optimal architecture or algorithms to use. Disadvantage - it's impossible to know at the outset of the project how long it will take to create an acceptable project. You don't know how many iterations you'll have to go through. If steady signs of progress can be seen, that's good.

 * Staged Delivery - show results in successively refined stages. Unlike evolutionary prototyping, when you use staged delivery, you know exactly what you're going to build when you set out to build it.

 * Evolutionary Delivery - straddles the ground between evolutionary programming and staged delivery. Develop a version of your product, show it to your "customer", and refine the product based on customer feedback.

Examples of modern terminology:

 * Scrum - an iterative, incremental process for developing any product or managing any work. It produces a potentially shippable set of functionality at the end of every iteration.

* Agile - "Individuals and interactions over processes and tools"

 * Extreme Programming - also known as XP

Software requirements

 Specific functional requirements

1. Are the inputs to the system (or program, piece of code, function, module) specified, such as

the input source, accuracy, range of values, and frequency?

2. Are the outputs from the system specified, their destination, such as the output desired

accuracy, its range of values, frequency of output, and format?

3. If you are using a GUI interfaces or web page, is the specific output format specified?

4. If you are using distributed computing and connecting to multiple computers, are all external

 hardware and software interfaces specified? Are external communication interfaces specified,
hand-shaking, error-checking, and communication protocols?

 5. If you have other users involved in these requirements, are all the tasks the user wants to

 perform specified? Is the data used in each task and the data resulting from each tasks specified?

 Quality requirements:

 6. If timing or speed is important, are the timings of operations specified, such as processing time,

data-transfer rate,and system throughput? If necessary is the expected response time from

the user specified for all necessary user input?

 7. If security is an issue, is the level of security specified?

 8. Is the reliability specified, including the consequences of software failure? vital information

 that needs to be protected from failure, and strategy for error detection and recovery?

 9. If machine memory or disk space is an issue, is the minimum machine memory and free disk

 space specified?

 10. Thinking ahead about future development - is the maintainability of the system specified, its

 ability to adapt to changes in specific functionality, and if necessary changes in operating

 environment and changes in its interfaces with other software? Is scalability an issue - can

 your program work just as well with 100/1000/1000000 users?

11. Testing your program: is the definition of success included? Is each requirement testable?

Are the requirements written clearly so that they can be understood by someone outside of
your expertise?

Are the requirements at a fairly consistent level of detail?

Is each requirement testable?

Are possible changes to the requirements specified, the likelihood of each change?

Architectural requirements

 Specific architectural topics to consider:

1. Is the overall organization of the program clear? Are major building blocks well defined,

including their areas of responsibilities and interfaces with other building blocks?

2. Are the most critical classes described and justified?

 3. Is the design of your data described? If you use a database, is its organization and content
specified?

 4. What sort of user interface is being used for this iteration? Is this strategy described? Is the user
interface modularized so that changes won't affect the rest of the program?

 5. Is a strategy for handling I/O described and justified?

 6. If applicable, are resource use estimates and a strategy for resource management described and
justified for scarce resources like threads, database connections, network bandwidth?

 7. If security is an issue, are security requirements described?

 8. Does your architecture describe how scalability will be achieved?

 9. Is a coherent error-handling strategy provided? If needed, is an approach to fault tolerance defined?

 10. Is the architecture designed to accomodate likely changes?

Summary of your preparation for software construction (from Code Complete, p. 59):

1. The overarching goal of preparing for construction is risk reduction. Be sure your preparation
activities are reducing risks, not increasing them.

2. If you want to develop high quality software, attention to quality must be part of the software

development process from the beginning to the end. Attention to quality at the beginning has a

greater influence on product quality than attention at the end.

3. The kind of project you're working on significantly affects construction prerequisites - many
projects should be highly iterative, others should be more sequential.

4. If a good problem definition hasn't been specified, you might be solving the wrong problem
during
construction.

5. If good requirements work hasn't been done, you might have missed important details of the
problem. Requirements changes cost 20 to 100 times as much in the stages following construction
as they
do earlier, so be sure the requirements are right before you start programming.

6. If a good architectural design hasn't been done, you might be solving the right problem the wrong
way during construction. The cost of architectural changes increases as more code is written for the
wrong architecture, so be sure the architecture is right.

Software Testing

Software Tests - 3 types:

 * Software testing #1 - Dynamic testing: Random tests, Structural tests, Functional tests,
Path and branch testing

 * Software testing #2 - Process Modeling - Finding a mathematical formula(s) to verify
and validate your program's behavior,

 * Software testing #3 (.doc) - Requirements and Specifications - Defining requirements and the
specifications for verifying these requirements,

Dynamic Testing Analysis

 Describe specific tests and runs (and/or specific coding methods) you've done in order to evaluate your project within each of the following dynamic testing analysis categories. Include path and branch testing techniques you may have used.

 Random testing - a series of random inputs, acting as a collection of random users, to test program's general reliability. This is testing that freely chooses test cases among the set of all possible test cases. The use of randomly determined inputs can detect faults that go undetected by other systematic testing techniques. Exhaustive testing, where the input test cases consists of every possible set of input values, is a form of random testing.

 Structural testing to test the reliability of your program's data structures - path and branch testing.

Structural testing is an approach to testing in which the internal control structure of a program is used to guide the selection of test data. It is an attempt to take the internal functional properties of a program into account during test data generation. This is testing that has full knowledge of the implementation of the system. It uses the information from the internal structure of a system to devise tests to check the operation of individual components.

 Functional testing tests your program's functions and modules. It uses various inputs to test the reliability of your functions/modules. Functional testing takes into account both functional requirements of a system and important functional properties that are part of its design or implementation. “In functional testing, a program is considered to be a function and is thought of in terms of input values and corresponding output values. This is testing that involves identifying and testing all the functions of the system as defined within the requirements. This form of testing is an example of black-box testing since it involves no knowledge of the implementation of
the system."

Which validation technique(s) did you use? Provide a description of any of the following validation
techniques you may have used.

 * Formal methods (use of mathematical and logical techniques to express, investigate, and

analyze the behavior of both hardware and software.)

* Fault injection (the intentional activation of faults by either hardware or software means to

observe the system operation under fault conditions.)

 * Hardware/Software fault injection (Software fault injection can be a simulation of hardware fault
injection.)

 * Dependability analysis - (identifying hazards and then proposing methods that reduce the risk of

the hazard occuring.)

* Hazard analysis - (guidelines to identify hazards, their root causes, and possible

countermeasures.)

 * Risk analysis - (Takes hazard analysis further by identifying the possible consequences of each

hazard and their probability of occuring.)

Process Modeling and Statistical Analysis

 Attempt to incorporate some kind of mathematical model(s) to validate and test your program.

You'll use mathematical modeling for verification and validation, finding formulas that predict outputs and behaviors independently of running your program. When you run your program, does it behave in a way that is consistent with the predictions of the mathematical formulas? Investigate why your program may act differently from what is predicted by the theoretical math formula(s)

 Identify a response variable, y. “Process modeling is the concise description of the total variation in one quantity, y. The response variable is a quantity that varies in a way that we hope to be able to summarize via the modeling process. Generally it is known that the variation of the response variable is systematically related to the values of one or more other variables. Testing the existence and nature of this dependence is part of the modeling process itself."

Requirements and Specifications

 This involves defining requirements and the specifications for verifying these requirements for your program. A requirement is a condition needed by a user to solve a problem or achieve an objective. A specification is a document that specifies the requirements, design, behavior, or other characteristics of a system:

 * in a complete, precise, verifiable manner

 * the procedures for determining whether these provisions have been satisfied

 The more focused (smaller) and concise your requirements are, the easier it is to define specifications.

Senior Research 2007-2008 Example "Warmup" Programming Assignments

Implement the following warmup problems in both Java and C. These warmup programs cover: general algorithms and single dimension arrays. Extra programs cover two dimension arrays, singly linked lists, and binary trees.

1. The 3n + 1 problem

· Consider the following algorithm to generate a sequence of numbers. Start with an integer n.
If n is even, divide by 2. If n is odd, multiply by 3 and add 1. Repeat
this process with the new value of n, terminating when n = 1. For example,
the following sequence of numbers will be generated for n = 22:

 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

· It is conjectured that this algorithm will terminate at n = 1 for every integer n.
This conjecture holds for all integers up to at least n = 1,000,000.

· For an input n, the cycle-length of n is the number of numbers
generated up to and including the 1. In the example above, the cycle length of
22 is 16.

· Part 1 - input 1 number from the keyboard, print the cycle for numbers from the starting value to 1. Also print the cycle length:

 Enter value: 22

 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

 Cycle length= 16

· Part 2 - Given any two numbers i and j, you are to determine the
maximum cycle length over all the numbers between i and j, including
both endpoints. Read in two values from the keyboard, print the cycle lenths from val1 to val2. Print the max cycle length:

Enter 2 values: 1 10

 1

Cycle length for 1= 1

 2 1

Cycle length for 2= 2

 3 10 5 16 8 4 2 1

Cycle length for 3= 8

 4 2 1

Cycle length for 4= 3

 5 16 8 4 2 1

Cycle length for 5= 6

 6 3 10 5 16 8 4 2 1

Cycle length for 6= 9

 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Cycle length for 7= 17

 8 4 2 1

Cycle length for 8= 4

 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Cycle length for 9= 20

 10 5 16 8 4 2 1

Cycle length for 10= 7

Max sequence cycle= 20

· Part 3 - read in from a text file a series of pairs of values. Compute the max cycle length for each pair of values.

· Input: The input consists of a series of pair of integers i and j, one
pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

· Output: For each pair of input integers i and j, output i, j
in the same order they appeared in the input and then the maximum cycle length
for integers between and including i and j. These three numbers
should be separated by one space, with all three numbers on one line and with
one line of output for each line of input.

 Sample Input Sample Output

 1 10 1 10 20

 100 200 100 200 125

 201 210 201 210 89

 900 1000 900 1000 174

Tally Lab

Background
A researcher wishes to calculate some statistical properties for a collection of data values. The data values are represented by the array tally. The indexes of the array represent the possible values of the actual data values
from zero to the maximal value (15 in the example below). Each array location contains the frequency (number of occurrences) of the value corresponding to its index. In the example below, tally[4] is 10, which means that the value 4 occurs ten times in the collection of data; whereas tally[8] is 0, which means that the value 8 does not occur in the data collection.

tally

Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Frequency 0 0 10 5 10 0 7 1 0 6 0 10 3 0 0 1

Assignment Part 1 - "Tally" array

· Write a program to recreate the above researcher's frequency list.

· Here's a trick to use:

· If the random values range from 0..15, create a count array
(count[0], count[1], ..., count[15])

· Initialize the counts to 0

· count[value]++ (or count[value] = count[value] + 1) to increment the counts

Assignment Part 2 - findMax() function

· Using the "tally" array from part 1, write a function to find the maximum frequency.
In tally above, findMax(tally) returns 10

· Syntax for this C function:
int findMax(int tally[]) {
. . .
return maxFreq;
}

Sample Starter programs

“3n+ 1” Sample starter program for part 1 in C

#include <stdio.h>

int sequence(int num)

{

 int count;

 int n;

 count=1;

 n = num;

 // ... complete this section

 return count;

}

int main()

{

 int val;

 int count;

 printf("Enter value: ");

 scanf("%d", &val);

 count = sequence(val);

 printf("Cycle length= %d\n", count);

 return 0;

}

“3n+ 1” Sample starter program for part 2 in C

#include <stdio.h>

int sequence(int num) {

 int count;

 int n;

 // ... complete this section

 return count;

}

int main() {

 int i;

 int max;

 int val1, val2;

 int count;

 printf("Enter 2 values: ");

 scanf("%d %d", &val1, &val2);

 max = 0;

 // Complete this section

 printf("Max sequence cycle= %d\n", max);

 return 0;

}

“3n+ 1” Sample starter program for part 3 in C

#include <stdio.h>

int sequence(int num)

{

 int count;

 int n;

 count=1;

 n = num;

 // ... complete this section

 return count;

}

int main()

{

 int i;

 int max;

 int val1, val2;

 int count;

 FILE *infile = fopen("hailstone.txt", "r");

 while(fscanf(infile,"%d %d", &val1, &val2) != EOF) {

 //Complete this section

 printf("%d\t%d\t%d\n", val1, val2, max);

 }

 return 0;

}

“3n+ 1” Sample starter programs in Java

import java.util.Scanner;

public class Hailstone1 {

 public static int sequence(int num)

 {

 int count;

 int n;

 count=1;

 n = num;

 // ... complete this section

 return count;

 }

 public static void main(String[] args) {

 int max;

 int val;

 int count;

 Scanner infile = new Scanner(System.in);

 System.out.print("Enter value: ");

 val = infile.nextInt();

 count = sequence(val);

 System.out.println("Cycle length= " + count);

 }

}

“3n+ 1” Sample starter program part 2 in Java

import java.util.Scanner;

public class Hailstone2 {

 public static int sequence(int num) {

 int count;

 int n;

 count=1;

 n = num;

 // ... complete this section

 return count;

 }

 public static void main(String[] args) {

 int max=0;

 int val1, val2;

 int count;

 Scanner infile = new Scanner(System.in);

 System.out.print("Enter 2 values: ");

 val1 = infile.nextInt();

 val2 = infile.nextInt();

 // Complete this section

 System.out.println("Max sequence cycle= " + max);

 }

}

“3n+ 1” Sample starter program part 3 in Java

import java.util.Scanner;

import java.io.*; //for File

public class Hailstone3

{

 public static int sequence(int num)

 {

 int count;

 int n;

 count=1;

 n = num;

 // ... complete this section

 return count;

 }

 public static void main(String[] args) throws Exception

 {

 int max;

 int val1, val2;

 int count;

 Scanner infile = new Scanner(new File("hailstone.txt"));

 while (infile.hasNext())

 {

 max = 0;

 val1 = infile.nextInt();

 val2 = infile.nextInt();

 //Complete this section

 System.out.println(" " + val1 + " " + val2 + " " + max);

 }

 }

}

“Tally lab” Sample starter program in C

#include <stdio.h>

const int MAXNUMBERS = 500;

const int MAXRANGE = 16;

int findMax(int array[])

{

 int max=0;

 // Complete this section

 return max;

}

void initArray(int tally[])

{

 int i;

 for(i=0; i<MAXRANGE; i++) {

 tally[i]=0;

 }

}

void printArray(int tally[])

{

 int i;

 for(i=0; i<MAXRANGE; i++) {

 printf("%4d",i);

 }

 printf("\n");

 for(i=0; i<MAXRANGE; i++) {

 printf("%4d",tally[i]);

 }

 printf("\n");

}

int main()

{

 int val;

 int tally[MAXRANGE];

 int mode, numValues;

 int count;

 FILE *infile = fopen("tallyfile.txt", "r");

 count=0;

 initArray(tally);

 while(fscanf(infile,"%d", &val) != EOF && count < MAXNUMBERS)

 {

 // Complete this section

 count++;

 }

 numValues=count;

 printArray(tally);

 mode = findMax(tally);

 printf("Max frequency=%d\n", mode);

 fclose(infile);

 return 0;

}

“Tally lab” Sample starter program in Java

/*Tally Lab warmup shell for Senior research course.

*/

 import java.util.Scanner;

 import java.io.*;

 public class TallyJavaShell {

 final static int MAXNUMBERS=500;

 final static int MAXRANGE=16;

 public static int findMax(int[] array) {

 int max=0;

 // Complete this section

 return max;

 }

 public static void initArray(int[] array)

 {

 for(int i=0; i<MAXRANGE; i++) {

 array[i]=0;

 }

 }

 public static void printArray(int[] array)

 {

 for(int i=0; i<MAXRANGE; i++) {

 System.out.printf("%4d",i);

 }

 System.out.printf("\n");

 for(int i=0; i<MAXRANGE; i++) {

 System.out.printf("%4d",array[i]);

 }

 System.out.printf("\n");

 }

 public static void main(String[] args) {

 int[] tally = new int[MAXRANGE];

 FileReader infile = null;

 try {

 infile = new FileReader("tallyfile.txt");

 }

 catch (FileNotFoundException ex) {

 System.out.println("File does not exist");

 }

 Scanner scanner = new Scanner(infile);

 int val, max;

 int mode, numModes;

 int count=0;

 initArray(tally);

 while (scanner.hasNext() && count < MAXNUMBERS) {

 // Complete this section

 count++;

 }

 printArray(tally);

 mode = findMax(tally);

 System.out.printf("Max frequency=%d\n", mode);

 }

}

CS Lab Research

�<!--Tally Lab report form,
 .doc
-->

One-37
One-37

