Cardinal Forest Elementary 2012, Spring semester, CSI program

 Fred Allard, Randy Latimer, and the students in CSI at Cardinal Forest

K-6

We are working with several basic types of programming environments. The first is block sliding, tiles representing code statements. In this category for this study are Scratch (MIT), Snap (Berkeley), and Etoys (Squeakland and Smalltalk). The next category is typed in languages with user interfaces adapted for education. Here we are using Kojo (written in Scala), RoboMind, Greenfoot (Java), and and possibly Python based environments. The third category of programming language we are using is those with a browser based interface. In this category we use Snap (Berkeley) and WeScheme (Scheme). A fourth category we investigate are agent based domains characterized by grid worlds with one to many agents interacting through successive generations. Agent based domains in this research are Greenfoot (Java), NetLogo (Logo), and AgentSheets (for purchase). The fifth category of language focus is robotic applications. Here we look at Lego Mindstorms (for purchase) and RoboMind (simulated robot). Also are educational initiatives with developing curricula currently active, for example Bootstrap (WeScheme), Etoys, and Greenfoot.

We chose initially to begin with block sliding environments in order to minimize typing skills needed to complete the blocks of code and program scripts. Age groups where keyboard typing and reading and spelling of words is an issue (K-1) may continue to focus more in the block sliding world through much of our program. Older age groups (3/4-6) will move on into typed in languages and agent based formats. Certain 'in-between' age groups (1,2) can vary with implementations, block sliding vs typed in.

Turtle geometry patterns are used as a start for developing the idea of algorithms. Drawing regular polygon shapes such as a triangle, square, pentagon, hexagon and octagon involve certain basic procedural concepts. A first category of concepts are those used to clear the screen, position the “turtle” drawing sprite, and set initial pen conditions such as pen up or down and the color of the pen. Positioning the turtle at (0,0) leads into discussions of the basics of coordinate geometry – x and y axis and coordinate points. Scratch and Snap set pen up or down using blocks specific for penup and pendown. Etoys sets the condition of pen down as true or false necessitating topics of boolean concepts

[image: image1.png]

[image: image2.png]

Fig 1a: Starter blocks in Snap

Fig 1b: Snap, start position of the 'turtle' sprite

[image: image3.png]

[image: image4.png]Block Editor:

pan up

pairt in direction
set pen color to

pen down

Fig 2a: starting blocks Etoys

Fig 2b: Sample turtle “sprite”

Note that in the Etoys version, a procedural block is created automatically and is named by the user as 'clearscreen' in this case. The creation of a procedural block can be done in Snap but not in Scratch.

[image: image5.png]move @D =tzps
tirn (5 @D deoress

[image: image6.png]

Fig 3a: Defining a procedural block in Snap

 Fig. 3B: a defined block, Snap

Drawing involves the basic movements of moving a particular number of 'steps' and turning a specified number of degrees in a clockwise or counterclockwise direction. The patterns of regular polygons with multiple repeated blocks quickly suggests the use of loops. Scratch uses a repeat <numtimes> loop block in which the uses must type in the number of times to repeat a particular seiries or sequences of blocks..

[image: image7.png]Block Editor:

Steps

degrees.

[image: image8.png]draviHexagan

Fig 4a,b : Block algorithm to draw a hexagon, Snap

[image: image9.png]Do O

turtle. (le:r all pen trails

pen down «false

turtle’s.

4x <4550,

turtle's.

4y +4a60)

turtle's.
turtle’
turtle's.

+heading
pen color < Mcolor
pen down + 4true

00

[image: image10.png]A
o g E

turtle. (le:r
's pen down « false
x <4550,

4y +4a60)

+heading
pen color < Mecolor
pen down « ftrue

pen trails

100

Fig 5a: Defining a drawHexagon procedure, Snap
 Fig. 5B: Using newly defined

 blocks in Snap

[image: image11.png]Repeat 46 times

o turtle forward by {75/
turtle turn by 460>

[image: image12.png]irtle drawHexagon

Fig. 6a: draw hexagon in Etoys

 Fig 6b: make a procedure script to run

 this example

[image: image13.png]icarawnemager]

drawHexagon

Repeat 45/ times

Do turtle forward byi75)
turtle tum by 160,

Fig 6c: Running the example 1 in Etoys

Within the world of turtle geometry and drawing regular polygons this set of basic commands allows drawings of regular polygons of various colors, sizes, and number of sides. Also the drawing of circles is simulated with many sided polygons. We have used pen commands for clearing the screen, setting the pen color, and the state of the pen (up/down). We use move forward and turning commands for drawing, and we use repeat blocks to loop through similar actions needed to draw the entire figure.

Topics for discussion involve:

· the geometry of polygons

· names of polygons: triangle, square, pentagon, hexagon, octagon

· how the number of sides affects the degree measures of the interior and exterior angles.

· Interior, exterior angles and relation to number of sides

· Simulating of a circle with a polygon with increasing numbers of sides

· “move” ← length of sides, “turn” ← exterior angle

· looping: repeat n times ← number of sides

Extensions to the drawHexagon algorithm can allow investigations of nested loops. Here we draw a hexagon, turn a certain number of degrees, and draw another hexagon. If we turn 18 degrees, we repeat this 20 times with an outer loop. Note that 18 x 20 = 360 degrees for a complete rotation.

[image: image14.png]

[image: image15.png]

Fig 6a: In Snap, the inner loop draws the

Fig. 6B: picture from Snap version,

 hexagon with sides = 75. The

 note the pen color changes

outer loop 'spins' the hexagon 18 degrees

with each iteration

each iteration.

[image: image16.png]

[image: image17.png]

Fig 7a: Snap version with no defined blocks
 Fig 7b: Snap version with defined blocks

[image: image18.png]dravitexagon

tirnAmaunt

[image: image19.png]S
Block Editor:

turn O QD degrees
changs pen color by QD

Fig 7c: Snap version with turnAmount block
Fig 7d: 'turnAmount' block definition

[image: image20.png]

[image: image21.png]o

O bt spnsagon | b ol 8

Repeat $20) times

turtle

drawHexagon

turtle.

turn by $18)

[image: image22.png]

Fig 8a-c: Etoys blocks to spin hexagon

[image: image23.png]exampie3 1 1

turtie clear all pen trails
turtle's pen down «{false
turtle’s x 4550,
turtle's by <4460,
turtle’s $heading «$0»
turtie's pen color +Mcolor
turtle's pen down « itrue
Repeat 420) times
Repeat {6 times
turtle forward by § 75,
turtle turn by {60,
turtle turn by §18:

Fig 8d: Etoys version with no defined blocks (scripts in Etoys)

The concept of variables can be a next important step in abstraction of algorithms. For example we can set the starting side length of a square to be 5 and draw consecutive squares with an increasing the sidelength by 5 each iteration.

[image: image24.png][change siae |BED)

[image: image25.png]

Fig. 9A: Snap, global variable for sidelength
Fig. 9B: Note final value of global side

[image: image26.png]Block Editor:

[image: image27.png]=T

change side

Fig. 10A,B: Block defined using global side

[image: image28.png]

Fig. 11 A: draw Square block with input for sidelength

[image: image29.png]

Fig. 11B: random size squares at random locations, using drawSquare with input

[image: image30.png]N
Block Editor:

vy (ranaiies (earah

w65 (rinaides)| deqraes

Fig. 12A: drawPolygon (Snap) with inputs for number of sides and sidelength

[image: image31.png]

Fig. 12B: Drawing random polygons at random locations

[image: image32.png]

Fig.. 12C: Random Polygons using drawPolygon with 2 inputs, number of sides and sidelength

[image: image33.png]Block Editor:

Fig 13: Local variable side (Snap)

1. January/February, Block sliding/tiles languages

Scratch and Etoys

 http://www.tjhsst.edu/~rlatimer/cardinalforest/ScratchProjects/CSI2012/ProjectsFeb2012.html
 Scratch (MIT):

 http://scratch.mit.edu/
 Etoys (Squeak and Smalltalk, Alan Kay, Viewpoints Research Inst)

http://www.squeakland.org/

http://vpri.org/

Turtle geometry: pen, movement, looping commands

Clear screen, pen up, pen down, move __ steps, turn __ degrees

Repeat __ times

Drawing regular polygons:

General algorithm:

Repeat numberOfTimes

move size

turn angle

 where:

 numberOfTimes → number of sides of the polygon

 size → length of the side

 angle → exterior (outside) angle = 360/numberOfSides

Also includes:

Polygon exercise sheet

Handwritten pseudocode w.orksheet for algorithms

Learning the names of figures: triangle, square, rectangle, pentagon, hexagon, octagon

Drawing a 'circle' as a many sided regular polygon where the outside (exterior) angle

gets small

Patterns: less number of sides → larger angle turn

Learning user interfaces: mouse use, left/right click, keyboard use, finding menus

Saving and loading programs at specific server locations for the lab

“When key pressed” commands to draw different shapes

“Quizzes”/Challenges where the exercise is not all written out for the student

Creative 'make up your own' patterns with different colors and shapes

2. Introduction of using variables:

Scratch version

http://www.tjhsst.edu/~rlatimer/cardinalforest/ScratchProjects/CSI2012/Feb29-2012/ProjectsFeb29-2012.html

Make a variable for side length

Also:

Use of 'broadcast” in Scratch for sending messages to run particular scripts.

for example: drawSquare and clearscreen

Patterns of variable length squares

Sensing the environment

Etoys version of using variables

http://www.tjhsst.edu/~rlatimer/cardinalforest/ScratchProjects/CSI2012/Feb29-2012/etoys/ProjectsEToysFeb29-2012.html

3. Browser based interface and typed in languages, March 2012

WeScheme, Bootstrap, Racket (Scheme):

http://www.wescheme.org/

http://www.bootstrapworld.org/

http://racket-lang.org/

Drawing shapes with Scheme

Using WeScheme's built in animation clock

UFO landing

Flying chicken

4. Snap (Berkeley), block sliding language, March/April 2012

Browser based programming and enhanced Scratch capabilities

http://snap.berkeley.edu/run

http://byob.berkeley.edu/

http://www.tjhsst.edu/~rlatimer/cardinalforest/ScratchProjects/CSI2012/Feb29-2012/snap/ProjectsSnapFeb29-2012.html

Expanded version of Scratch

Defining of procedures (blocks) with inputs

Expanded loops, operators, variables, lists

Functional programming capabilities

Recursion

Exercises include defining new blocks to

draw square, triangle, pentagon, hexagon, octagon,

circle

draw spiral patterns

recursive fractal patterns

use of recursive algorithms for looping

Random numbers

Sensing the environment

5. RoboMind, April/May 2012

http://www.robomind.net/en/index.html

http://www.tjhsst.edu/~rlatimer/cardinalforest/ScratchProjects/CSI2012/Feb29-2012/robomind/ProjectsRobomindApril19-2012.html

Driving a robot around various and variable map landscapes

Painting patterns with forward, back, turning right/left, paint white and paint black

Writing programs with text.

Use of 'remote control' feature to practice writing programs

Capturing beacons

Sensing walls, obstacles, environment

Using AI to drive through obstacles/mazes and to find beacons

6. Kojo programming interfaces (from Scala), May 2012

http://www.kogics.net/sf:kojo

http://www.tjhsst.edu/~rlatimer/cardinalforest/ScratchProjects/CSI2012/Feb29-2012/kojo/ProjectsKojoMay3-2012.html

Turtle geometry and graphics using typed in programs

7. Greenfoot – Java based agent worlds (we didn't make it to Greenfoot this school year)

http://www.tjhsst.edu/~rlatimer/cardinalforest/ScratchProjects/CSI2012/Feb29-2012/greenfoot/ProjectsGreenfootApril19-2012.html
8. more to come

