THE GENETIC ALGORITHM AND THE PRISONER'S

DILEMMA®

STUDENT PAPER

Benjamin Hosp
Roanoke College
Salem, VA
bhosp@roanoke.edu

ABSTRACT

The Prisoner's Dilemma is a game theory smulation used by sociologists to sudy
humean interactions. This game placestwo "players' in a Stuation wherein both of
them, as apair, would be better off if they cooperated witheach other, but each of
them, individualy, is better off if he or she works towards his or her own sdfish
interests. However, when two players play this game repeatedly, cooperation
becomes possible among rationa players. Inthis paper, we will examine amethod
cdled the genetic dgorithm for usng a computer to derive Strategies for the IPD.
The genetic algorithm is applicable to many problems, but it does have many
limitations, and this paper will demongtrate one of them in particular: the genetic
agorithm cannot effectively operate on its own crossover and mutation rates.

1. INTRODUCTION

The Prisoner's Dilemmalis agame theory smulaionused by sociologists to study human
interactions. This game placestwo "players’ inagtuationwherein both of them, asapair, would
be better off if they cooperated with each other, but each of them, individudly, is better off if
he or she works towards his or her own sdfish interests. Each player can make one of two

" Copyright © 2003 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee al or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and noticeis given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

135



JCSC 19, 3 (January 2004)

moves, cooperate or defect. Each
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play this game repeatedly,

cooperation becomes possible

among rationa players. It isdill ineach player's short-termbest interest to defect, but the threat
of retdiation from the other player and the promise of increased gans through future
cooperationcanlead the playersto cooperate. (Orkin, 125) This makesthe Iterated Prisoner's
Dilemma (IPD) amore interesting game.

In this paper, we will examine amethod called the genetic dgorithm for usng a computer
to derive drategies for the IPD. The genetic dgorithmis gpplicable to many problems, but this
paper will demondrate that it does have some limitations.

2. OVERVIEW OF LITERATURE

An effective drategy inthisgameis"TIT FOR TAT" (TFT). According to this dtrategy,
aplayer cooperates in the first round, and then, in subsequent rounds, Smply makes whatever
move the opponent made in the previous round. This strategy cannot be exploited in the game
more than once, but the player does tend to cooperate alot, generating many reward payoffs
(because he or she starts out cooperating, and will cooperate as long as the opponent doesthe
same). This main feature of TFT, reciproca cooperation, is generaly seen as characteridtic of
any effective drategy for an IPD. (Coveney and Highfield, 224-6)

Many problemsin biology, sociology, psychology, and economics can be abstracted as
an|PD (Orkin 124). Essentidly, any timeanactor is able to recognize other actors, cooperation
can evolve. For example, severa speciesof anima seemto useastrategy sort of like TIT FOR
TAT, such as the tree swalow and a hermaphroditic fish cdled the hamlet (for example, the
hamlet will only approach a predator or other dangerous Stuationwhenothersinits school are
movingwith it). Even animals of different species can evolve this sort of cooperationwitheach
other, and human societies can develop "reciprocd dtruism,” as demondgtrated by Robert
Trivers (Coveney, 225-6). Conserving resources is an example of the way human interaction
canformaPrisoner's Dilemma if we dl conserve, we al benefit, but if most conserve and afew
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don't, the few get al the benefits of conservation (resources will last longer and will be more
plentiful), but are also able to squander as they wish. Unfortunately, people tend to noticethis,
and whentoo many decideto squander rather than conserve, everybody loses, but not as much
as the suckers who conserved, hoping that everyone else would do the same, but now receive
neither the benefits of mass conservation nor the benefits of individua excess. (Hardin)

Robert Axelrod conducted experiments that demonstrated the supremacy of reciprocal
cooperation. Axelrod conducted experiments based on John Holland's work with the genetic
agorithm. The genetic agorithm isamethodthat attemptsto emulate the forces of evolutionand
natura sdection to solve a problem. The firg thing to do is to devise a way to express any
solution to the problem as agtring of bits, which we can refer to as a"chromosome.” We will
aso need afunction F(s) whichwill give asolution s a score expressng how well it solves the
problem. Next, we generate a random set of bit strings of the proper length. Cal this set the
population. Now:

For n generations.

For each member p, of the population:
Cdculate and store F(p)).

Reproduce the best members of the population, with better solutions earning more
reproductions than poorer solutions, so that we maintain aconstant population
size. Thiscreates a set of children. Discard the current population, and treat
the children as the new population.

The"reproduction” operationisdefined to Smulate sexud reproduction. Two parentswho
have eachearnedat least one reproduction by having high F-scores (fitness) relative to the other
membersof the populationpair off. Parent A starts copying bitsfromits chromosome into Child
A's chromosome, and Parent B starts copying its bits into Child B. Each time apair of such
copiesoccurs, thereisachance of crossover, meaningthat the parents switchther "detination”
children, so that we copy as described above if there have been an even number of crossover
events, otherwise Parent A copiesinto Child B, and Parent B copiesinto Child A. Also, each
time a bit is copied, there is a chance of mutation, meaning that the bit that is written is the
opposite of the bit that was read. The premise of the genetic dgorithm method is that each
subsequent generation is likely to contain better and better solutions, just as each subsequent
generation of biologica organismsislikely to be better and better adapted to its environment.

Axelrod noted that any 1PD drategy that could remember the last three turns could be
represented by seventy bits: sixty-four to tel the strategy what to do based on those last three
turns (because there are four payoffs and three turns of memory, so the number of permutations
are 4°=64), and six more to represent the initial assumptions about both players last three
moves before actud play begins. The function F in this case was the tota number of pointsa
drategy would accumulate after playing an IPD with ether alist of human-designed drategies
or with each other member of the population.

Each strategy received a reproduction if its fitness was within one standard deviation of
the mean fitness for that generation. If the fitness was below this range, the strategy received
zero reproductions; if it was above thisrange, the strategy received one extra reproduction for
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every ful standard deviation its score was above the mean, so that a strategy with a score
between one and two standard deviations above the mean would receive two reproductions,
a drategy with a score between two and three standard deviations above the mean would
receive three reproductions, and so on. If this system awarded fewer reproductions than the
population size, the balance would be digtributed randomly among the strategies that had
aready earned areproduction. Axelrod reports that in both types of smulation, the strategies
that evolved generdly cdlosdly resemble TFT. Axelrod observed that the cooperationrate, which
started out at 50% (because the firg Strategies are randomly-generated), quickly plummets,
because only sdfish strategies get good scores. Soon, however, some strategy is generated
which has figured out reciprocal cooperation. This strategy and its descendants quickly
dominate the population, and the cooperation rate risesto dmost 100% and stays there until
the end of the smulation. Axerod concludes that the genetic dgorithmisextremely effective at
searching the large (about 10%%) number of | PD strategiesthat can"remember three roundsfor
effective Srategies.

Inthis paper, we will examine severd variations on Axelrod'swork. Axelrod dways used
the same rates at which crossover and mutation events occur: crossover would occur about
once every reproduction (1/70 chanceeachcopy), and mutationwould occur about once every
other reproduction (1/140 chance each copy). We will examine what happenswhentheserates
are et to different vaues. In addition to examining systems with fixed rates of crossover, we
will examine what happens when the genetic dgorithm is alowed to operate on these rates,
causing them to vary from generation to generation, and aso from Strategy to strategy.
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3. BASIC PROGRAM

Figure 1 showsthe payoffs graphs fromarecreationof Axelrod'ssmulaions. Each point
on the graphrepresentsthe total number of payoffs one generation of the population received.
The key features of this graph match Axerod's report, except for the rise of the "trader”
strategies betweenthe defectorsand reciproca cooperators, represented by the plateau inthe
Temptation and Sucker lines between generations 35 and 65. These strategieswill cooperate,
then defect, then cooperate, aslong astheir opponent is doing the same. The idealis that one
drategy Starts on a cooperation and one darts on a defection, resulting in both getting
Temptation payoffs about hdf the time and Sucker payoffs about haf the time. Thisresultsin
an average payoff of aout 2.5/round, as opposed to the 1/round of dl Punishments, or the
3/round of al Rewards. This means that the tradersdo better than the defectors, and are able
to replace them as the dominant members of the population, but are replaced when the
reciprocators arise.

Observation 1: A populationof | PD strategies can begin trading Temptation
and Sucker payoffs asan intermediate step between smple defection and
reciprocal cooper ation.

4. EFFECTS OF CHANGING THE CROSSOVER AND MUTATION RATES

Whenthe rates of crossover and mutation are dtered, we observe that varying the rates
between 1/20 and 1/256 doesn't have any dgnificant effect on the smulation; the dip in
cooperations followed by a sharp rise and plateau are ill there, dthough higher rates of
crossover and mutationdo seemto make dl the graphs ook more"jagged,” meaning that things
change morefrom generationto generation, and seemmore generdly unstable. However, rates
outside of this range are likdy to cause sgnificantly different behavior. Firgt of al, when the
crossover and mutationrates are both set to O, the popul ationwill obvioudy containonly copies
of the dtrategies randomly generated at the beginning; with no crossover or mutetion, dl the
childrenwill look exactly likeoneor the other of their parents. This means that the Strategiesthat
come to dominate the popul ationwill be exact copies of whatever randomly-generated Strategy
happened to do the best at the beginning. In the first generation, some drategies are best at
finegling cooperations out of thar neighbors, earning themsaves Rewards or Temptations.
These gtrategieswill have the most children in the next generation, so when the next generation
garts playing games with each other, the children of the most successful strategies find many
copies of themsdves. This means that if one of these dtrategies is particularly good at
cooperating with copies of itsdf, then it will do extremdy wel, because it will be gble to
generate more and more copies of itself with each successive generation. This means that

1Of course, multiple exact copies of the same organism can't do this because they 'l
aways be making the same moves as each other. Thisis more of a population-scale
drategy, and doesn't actudly result in all Temptations and Suckers, because it takes each
pairing afew turnsto work out the pattern. Examining each pairing wont give us much clue
about what's going on, but thisis a very recognizable state of a population.

139



JCSC 19, 3 (January 2004)

amulations with crossover and mutation rates set a O will eventudly consist of 200 copies of
whichever randomly-generated strategy happened to be the best at cooperating with itsdlf.
Usudly at least one strategy which cooperates with itsdf dl or dmogt dl the time is generated,
so these populations end up with quite high rates of cooperation, but not aways. They do
aways levd off and become 200 copies of one strategy farly quickly, usudly within 30
generations, often fadter.

Observation 2: When crossover and mutation are tur nedoff, the strategies
cannot change, so whatever randomly-gener ated initial strategy is best at
cooper ating with a copy of itself will take over the entire population.

Next, we can set the mutation and crossover ratesto an unreasonably high number, like
1/4 or 1/2. This prevents any order from arising in the population at dl. The cooperation rate
takes arandomwalk around 50%, whichcausesthe rate of occurrence of each payoff to take
arandomwak around 25%. Aswedecrease the rates, thereisno improvement inthe stuation,
until we reach 1/20, at which point we see evolution asnormd, athough the graphs do contain
more noise thanwe saw before. The lower bound on this range of "reasonable’ rates appears
to be close to 1/256. The lower bound is not as clear as the upper bound because, whileit is
clear when a population has begun random walks it will not recover from, it will not be clear
whether it will never begin evolving (because the crossover and mutation rates are too low) or
whether it is smply evolving very dowly (because the rates are low, but not too low).

Observation 3: With cr ossover and mutationr ateslessthan or equal to 1/20
(but still greater than some lower bound which is probably approximately
1/256), we see the sort of evolution towards reciprocal cooperation that
Axelrod describes. With rates above 1/20, we instead see random walks.

Theexact value of 1/20 is probably related in some way to the size of the chromosome.
The one exception to the random walk with high rates scenario occurs when crossover and
mutation rates are both set to 1.0 (or very close to 1.0), meaning that a crossover and a
mutation happen each time a bit is copied. Bizardy, a pattern is able to emerge where the
children will ook nathing like their parents. A cyde emergesof 200 identical strategiesthat do
quitewdl, followed by their 200 children, which are their exact opposites. Thesedon't do very
well, but they are only competing with exact copies of themsalves, so they are dl Hill aoleto
reproduce, producing an exact copy of the generation before them, and so on.

So far, we have only examined smulations where both crossover and mutation were
carried out. What would the effect be if mutationwere turned off? Surprisngly, it doesn't matter
much what the crossover rate is when mutation is turned off; whatever the crossover rate is
(evenif it is extremey high), the same thing happens. the population evolves essentidly as
normd (athough it gets dower asthe crossover rate gets higher) until it is cooperating dl the
time. Once this happens, al breeds? die off except one. On the other hand, when crossover is

2A breed is defined as a set of dl Strategies in a population who will dways make the
same moves in any Stuation reachable through play. This does not dways mean that the
chromosomes necessarily have to be the same, because sometimes certain locations on the
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turned off, but the mutation rate is st high, the population can never evolve beyond meking
moves essentidly at random.

Observation4: The mutationrateiswhat isactually causing the behavior in
Observation 3. Without mutation, almost any crossover rate will allow
evolution to reciprocal cooperation. Without crossover, however, a very
small range of mutationr atesallowsuchevolution. However, asmall amount
of mutation helps crossover move evolution along faster.

Thereare clear differences between systems with different crossover and mutationrates.
We canveify tha thereis an advantage to having low, reasonable crossover and mutationrates
by running a smulation where two "species’ of strategies compete: one withlow rates, and one
with large, unreasonable rates. As seen in Figure 2, the low-rate species quickly evolves
reciprocal cooperation, the high-rate species does not, so the low-rate strategies soon get al
the reproductions, the high-rate species dies out.
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chromosome can't be reached. For example, a strategy that defects after PPP, TPP, RPP,
and SPP will never useits bit at PPR (because it would have had to cooperate after two
Punishments to get that Reward, and this strategy never does that). Thus, two Strategies that
defect in those four Situations but make different moves after PPR may be members of the
same the same breed.
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Observation 5: Thereis selection pressuretoward having low, reasonable
crossover and mutation rates.

5. EVOLVING CROSSOVER AND MUTATION RATES

We will now examine what hgppens when we try to let the genetic dgorithm determine
the crossover and mutation rates (in additionto the strategies themselves. Suppose we double
the chromosome size (from 70 bitsto 140 bits). These extra bits will be used to represent the
crossover and mutation rates. We will use 35 bits for each rate. The genetic agorithm will
operate on this chromosome exactly asit did on the previous chromosome, withthe exception
that before reproductionis carried out betweentwo parents, it will read the crossover rate from
each parent's chromosome, average them, and use that as the crossover rate for that
reproduction operation (and do the same for the mutation rate). In other words, at the same
time as the genetic dgorithm is dtering the strategies, it will dter the rates a which it does the
dtering. We expect to see that strategieswithtoo-high crossover and mutationrateswill die out
because they can't copy themsdlves effectively, and strategies with too-low crossover and
mutetionrateswill die out because they can't adapt to their environment, and only strategieswith
ratesin the 1/256 to 1/20 range will be able to survive.

Suppose we interpret the 35 hits used to encode each rate as follows the ith bit
represents the quantity 2'. We will total al such negative powers of two which correspond to
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"on" bits and use that as the rate in question. Suppose further that we initidize the population
with crossover and mutation rates of 24=1/64. What we see is the average® crossover and
mutation rates of the population quickly rise to about %2, and the population then behaves asiit
did whenitscrossover and mutationrates werefixed at %2 the cooperationrate takes arandom
wak around 50%, which causes the rate of occurrence of each payoff to take arandom walk
around 25%, a Stuation reflected in Figure 3.

NPT:

We know there is an evolutionary advantage to crossover and mutation rates between
1/256 and 1/20, so why does the population average tend to %2? Consder what will happen
with this system (Call it the Negative Powers of Two, or NPT system) in the 35 bits used for
encoding the mutationrate. Weinitidized thisrate to 1/64. Each time we copy this regionof the
chromosome (35 hits) we have adightly better than 1:2 chance of a mutation. This mutationis
much more likely to turn on a bit than to turn one off (because only one bit isturned on a this
point.) So the average mutationrate inthe next generationwill be dightly higher, because turning
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*The average is ameaningful gpproximeation of the crossover and mutation rates that
are being used even when the standard deviation is high because when two srategies are
paired up for reproduction their crossover and mutation rates are averaged.
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bits on increasesthis mutationrate. This process will continue with each successve generation
until about hdlf the bitsare turned oninmost chromaosomes, at which point further mutations are
just as likely to turn on bits off asto turn off bits on. Mutation will cause a Smilar processto
occur in the crossover rate regionof the chromosome. When about haf the bits are turned on
inthe NPT system, the population average is¥%, because this systemisatruncationof the series
YA+Y+C+..=1, 0 doing about half these additions at random will, on average, add up to
about ¥2. Wewon't necessarily see many numbers close to Y2, because some bitsare weighted
more than others — the bit worth %, in particular, will cause the individua numbers to vary
wildly. But in Figure 4, we see exactly what we expect from andyss of the NPT system: the
average rates quickly riseto Y2, and the rates standard deviations rise quickly to approximately
3/10.

InN:

We might now believe that there is some problemwiththe NPT system. So we will now
examine three more encoding systems to see if this bias towards hdf the bits being onisa
generd characterigtic of these systems. Firdt, consider asystemwherethe 35 bits for each rate
are interpreted as a number n, and the rate is then treated as 1/n, except when n=0, when we
ingead use avery smdl number. Cdl this system the Inverse n system, or InN. Clearly, many
of these bits have the potential to make 1/n very smdl. Once any high-order bit of n isturned
on, the rate will get very smdl, and when this hgppens to the mutetion rate, it will be very hard
for thishit ever to get turned off again. Since most of N's hits have this property, it isonly a
matter of time before enough members of the population have crossover and mutation rates of
amost zero to make the crossover and mutation rates actually used ineachreproductionlikey
to bedmog zero. If werunasmulaionusngthe InN system, we in fact see the crossover and
mutationrates quickly drop to dmost zero, and thenwe have a populationthat behaves asif the
rates were fixed at zero. The gtatic behavior we noticed in Observation 2 is back.

EWB:

So far, the problem seems to be that certain bits have different weights than other bitsin
boththe NPT and InN systems. So consider the following system: if k of the 35 bitsare on, the
rate is interpreted as k/35. Cdl thisthe Equa-Weighted Bits system, or EWB. Even though
each hit has the same value (1/35), we are going to have the same sort of problem aswe did
with NPT: about hdf the bits will get turned on until random mutations can't change the
percentage of bits that are on (becausethey are equdly likdy to turnabit onas they are to turn
one off), so EWB's average crossover and mutationrateswill tend to move quickly towards the
vaue they have when approximately haf their bits are on: %% The problemwas not the fact that
certain bits have different weights, but that we can predict the vaue we get when approximately
haf the bits are on. (Upon reflection, we notice that InN has the same property, athough we
aren't likdy to see hdf the bits get turned on, because the value of InN'srates is so srongly
attracted to zero that we will have to wait avery long time to see hdf the bits get turned on.)

Observation 6: Despite the selection pressure noted in Observation 5, the
genetic algorithm, whenallowedtooper ate oncr ossover and mutationr ates,
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will tend to select rates according to mathematical bias present in the
system used for inter preting abit string asareal number. The population's
average crossover and mutation rates will quickly become whatever the
average result is when the interpretation system is used on strings with
approximately half their bitsturned on.

PNF:

We will now examine one more interpretationsystem, and seeif it supports Observation
6. Suppose we use our bits asfollows:

« Bits1-4 represent +1/32, -1/32, +1/32, -1/32.
* Bits5-8 represent +1/64, -1/64, +3/64, -3/64.
« Bits9-12 represent +1/128, -1/128, +7/128, - 7/128.

And so on; until we have used 32 of our 35 hits (discard the remaining three). This system (call
it Pogitive and Negative Fractions, or PNF) will produce area number between -¥2 and +%4,
to which we add Y% to get the rate in question. This system is most like NPT; the bits have
different weights (athough the pattern of weights is more complicated here than in NPT), and
the average vaue when gpproximately ¥z of the bits are on is about ¥z (since half the bits
represent negations of the other hdf), but we will expect a large standard deviation. Thisis
exactly what the experimentd data shows us. We get a graph that isdmost indidinguishable
from Figure 4. Furthermore, to verify that the cause of this behavior is actudly the mathematica
bias present in these four interpretation systems and not some esoteric feature of the IPD, we
can run Smulaions where F, the fitness function, is either a congtant function or a random
number generator. In both cases, the progression of the rates is not noticeably different from
when the IPD games were actudly played.

6. CONCLUSION

By meking dterations to Axdrod's dmulaion, we have made sSx observations.
Observation 1 tdls us that there are other local optima in populations of |PD strategies than
smple defection and reciproca cooperation, but we have found nothing to unseet reciprocd
cooperation as the optimum strategy. Observation 2 describes the static behavior we get
without crossover and mutation. Observation 3 identifiesa range of "reasonabl€’ crossover and
mutetion rates ingde which we can expect to see the evolutionary behavior as described
previoudy, but below which we can expect to see gatic behavior as in Observation 2, and
above which we can expect to see random walks. Observation 4 identifies the culprit in the
random walk scenario as mutation; "unreasonable” rates of crossover without mutation can
alow evolutionwhich"unreasonable’ rates of mutationwould destroy. Observation5 confirms
that when we use both mutation and crossover, low, "reasonabl€” rates are better.

Observation6 isthe most complicated and important one. It identifies a severe problem
with any attempt to alow a genetic agorithm-based smulation to determine its own rates of
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crossover and mutaion: any systemfor encoding the rates ashit srings (so the genetic agorithm
can operate on them) will have some kind of bias, and this biasis likely to be amuch stronger
atractor than the sdlection pressure towards reasonable rates. We have verified Observation
6 for four didinct rate encoding systems, and as Observation 4 would suggest, we see that
mutation is respongble for the strong biases in these systems, because it tends to turn on
goproximately haf the bits of the mutation "chromasome.” The obvious next step would beto
try this with mutation turned off, but it isn't clear how this could be meaningful: we cannot
intidize every crossover rateto the same vaue (becauise crossover aone would not be able to
change this vaue), but we cannot salect the initid rates purely randomly either (because then
wed jus gart out with gpproximately hdf the bits turned on, which is what were trying to
avoid.) Some dternate method must be found.
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