
An Efficient MPI Allgather for Grids ∗

Rakhi Gupta
Computer Science/Information Technology

Department
Jaypee Institute of Information Technology

University
Noida-201307

India
rakhi.hemani@jiit.ac.in

Sathish Vadhiyar
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore-560012

India
vss@serc.iisc.ernet.in

ABSTRACT
Allgather is an important MPI collective communication.
Most of the algorithms for allgather have been designed for
homogeneous and tightly coupled systems. The existing al-
gorithms for allgather on Grid systems do not efficiently
utilize the bandwidths available on slow wide-area links of
the grid. In this paper, we present an algorithm for allgather
on grids that efficiently utilizes wide-area bandwidths and
is also wide-area optimal. Our algorithm is also adaptive
to grid load dynamics since it considers transient network
characteristics for dividing the nodes into clusters. Our ex-
periments on a real-grid setup consisting of 3 sites show that
our algorithm gives an average performance improvement of
52% over existing strategies.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming, Parallel programming

General Terms
Algorithms, Design, Performance

Keywords
MPI Allgather, Grids

1. INTRODUCTION
Collective communication operations are widely used in

MPI applications and play an important role in their per-
formance. Hence, various projects have focused on optimiza-
tion of collective communications for various kinds of par-
allel computing environments including homogeneous and

∗This work is supported by Indian Institute of Science’s 10th

Plan Grant SERC Part(2A) Special Grant (45/SERC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’07, June 25–29, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-673-8/07/0006 ...$5.00.

heterogeneous LAN networks [3,4,6,8,22] and most recently
Grid systems [9,11,12,14,19,20].

Allgather is an important many-to-many collective com-
munication operation. Allgather on N processes can be con-
sidered as equivalent to N broadcasts of data, each con-
ducted with a distinct root. An algorithm for implementing
allgather needs to specify a schedule of the required data
transfers. An efficient allgather schedule is dependent on
various factors including message size and network charac-
teristics.

Most of the algorithms for allgather are designed for ho-
mogeneous networks [3, 4, 6, 8, 22]. These algorithms fol-
low uniform communication patterns between all nodes and
hence cannot be used in Grid settings where the network
links are highly heterogeneous and the link characteristics
change over time. Current popular techniques for allgather
on grids [12,14,18] follow static network hierarchical schemes,
where the nodes are divided into clusters on the basis of
network topology and a representative/coordinator node is
chosen from each cluster. The inter cluster communications
are done through these representative nodes. At any given
point of time, only one data transfer takes place between
two representative nodes. These techniques are not efficient
since the clusters are separated by wide-area links that can
sustain multiple simultaneous data transfers with the same
end-to-end bandwidths [5]. Hence the existing strategies for
grids do not exploit the total available bandwidths of the
wide-area links.

In this paper, we present our cluster based and incremen-
tal greedy algorithm called Min3-Allgather, for allgather on
grids. Our algorithm divides the nodes into clusters based
on transient network characteristics, namely available band-
widths, and follows a recursive approach where allgather
is performed at different levels of the hierarchy. Our al-
gorithm allows multiple simultaneous communications be-
tween 2 clusters separated by slow wide-area links and hence
effectively utilizes the available bandwidths of the wide-area
links. Our algorithm is also wide-area optimal [12,14] since it
ensures that a data segment is transferred only once between
two clusters separated by a wide-area link. We compared
the time taken by allgather schedules determined by this
algorithm with current popular implementations. We also
compared our algorithm with a strategy where allgather is
constructed from a set of broadcast trees. Our experiments
on a real-grid setup show that the average performance im-
provement of our algorithm is 52% over existing strategies.

In Section 2, we present related efforts in the development

169

of allgather algorithms. In Section 3, we describe the design
principles used in the development of our algorithm. Section
4 explains the communication models used in our algorithm.
Section 5 describes our algorithm, Min3-Allgather, for grids.
In Section 6, we compare our algorithm with existing strate-
gies on a real-grid setup and present results. Section 7 gives
conclusions and Section 8 presents future work.

2. RELATED WORK
A number of generic and theoretically efficient allgather

algorithms have been developed for homogeneous clusters
[8]. Simple algorithm posts all the sends and receives and
waits for their completion. In this algorithm, a process sends
messages to other processes in the order of their ranks. In
order to avoid the potential node and network contention
caused by the simple algorithm, spreading simple algorithm
was proposed. In this algorithm, in each iteration i, a pro-
cess p sends its data to process (p+i) mod N and receives
data from process (p-i+N) mod N where N is the number
of processes. The ring/bucket/circular algorithm [6] was de-
veloped for architectures where near-neighbor communica-
tions can be beneficial. At each iteration i, a process sends
data corresponding to index (p-i+1+N) mod N to its right
neighbor process, i.e. process (p+1) mod N, and receives
data from its left neighbor process, i.e. process (p-1) mod
N. The time taken for allgather in simple, spreading simple
and ring algorithms are (N-1)*(L + m/B), where L is the
latency, m is the message size and B is the bandwidth.

Recursive doubling algorithm takes lesser time as com-
pared to previous algorithms because the number of trans-
fers (hence latency) is reduced. The number of iterations
required when N is a power of 2 is log N. In each iteration
i, processes separated by a distance of 2i−1 exchange data.
Recursive doubling algorithm is sub-optimal when the num-
ber of processes is not a power of two, because some data
transfers may be repeated. The dissemination algorithm
developed by Benson et. al. [3] is similar to the single port
algorithm described in work by Bruck et. al. [4]. The algo-
rithm has �(log N)� iterations. In each iteration i, process
p sends data to the process (p + 2i−1) mod N. The amount
of data sent in all iterations, (except for the last) is 2i−1*m.
For the last iteration i, (p - 2i−1)*m data is sent. The work
by Thakur et. al. [22] gives a detailed analysis of the above
algorithms for allgather. It is shown that different algo-
rithms are optimal for different message sizes. MPICH [17],
the popular implementation of MPI, uses recursive doubling
for small message sizes when number of processes is a power
of 2. However, if the number of processes is not a power of
2, dissemination algorithm is used. MPICH uses ring algo-
rithm for large message sizes.

Current popular topology-aware allgather scheduling strate-
gies for grids divide the network into network hierarchies.
The nodes are divided into clusters and a coordinator node
is assigned to each cluster. MagPIe [12] proposes a three
phase algorithm for allgather - gather data at coordinators,
allgather among coordinators and broadcast of data by co-
ordinators. In the second phase, the coordinators perform
allgather using spreading simple algorithm. At this stage
all coordinators have all the required data. In the third
phase, coordinators broadcast data using binomial broad-
cast to processes in the cluster. MPICH-G2 [18] implements
a similar algorithm. The algorithm has 2 phases. In the first
phase, data is gathered up the hierarchy using recursive dou-

bling. Next, data is broadcast downwards using binomial
broadcast. The major drawback of these approaches is that
data transmission is sequentialized at coordinators. This re-
sults in low usage of available bandwidths at higher layers of
hierarchy (e.g. WAN links). Also, in these approaches, the
network hierarchy for a given grid setup is formed on the
basis of information about WAN and LAN links. Hence the
network hierarchy is static and the same hierarchy will be
used for all the allgather operations. Our algorithm allows
multiple simultaneous data transfers between 2 clusters re-
sulting in increased use of available bandwidths on wide-area
networks and hence improved performance of allgather on
grids. Also, our algorithm forms the network hierarchy on
the basis of transient network characteristics, namely, avail-
able bandwidths. Thus our algorithm is adaptive to grid
load dynamics since the network hierarchy can change with
the changes in transient network characteristics.

3. DESIGN PRINCIPLES
Following are the design principles used in the construc-

tion of our allgather algorithm.

1. Multi-level collective communication algorithms
are more suitable for grids than single-level al-
gorithms.

Collective communication algorithms for homogeneous
systems [8,17] and some recent heuristics for distributed
systems [16] follow a single-level strategy for build com-
munication schedules. The recent efforts for grids [9,
11,12,14] divide the given set of nodes into clusters/pools,
form hierarchies between the clusters and follow dif-
ferent strategies for different levels of hierarchies. The
intra-cluster links (LAN links, high performance net-
works) are relatively faster than inter-cluster (WAN,
internet, campus networks) links. Such clustering of
nodes helps in designing algorithms that carefully avoid
transmitting the same data multiple times on a slow
link connecting two clusters. This is essential for en-
suring wide area optimality of the collective commu-
nication algorithms [14]. While some strategies divide
the nodes or network based on static network topolo-
gies [11,12,14], we divide the nodes based on transient
network characteristics similar to our earlier approach
for broadcasts [9].

2. WAN links can sustain many simultaneous trans-
fers without performance degradation

In the current popular algorithms for allgather on grids
links [12,18], a single coordinator node is chosen in ev-
ery cluster and only the coordinators participate in
inter-cluster data transfers across WAN links. How-
ever, it is difficult to utilize total bandwidth available
on a WAN link by a single data transfer. This is be-
cause of TCP behavior, where a host sends some pack-
ets and then waits for acknowledgment before sending
next packets. High Round Trip Times (RTT) between
nodes separated by WAN links cause late arrival of ac-
knowledgment packets resulting in delays in the trans-
mission of packets, and hence lesser bandwidth uti-
lization. It has been found that many simultaneous
transfers on these links can help in effective utilization
of underlying bandwidth [5].

170

Data Flows From Remote Sites

0

1

3

2

0

1

3

2

A Cluster

Data Flow from Remote Site

Data Flow from
Remote Site

12

23

3

4

1

2

2

1

2

2

Figure 1: Broadcast Trees within a Cluster

Moreover, the concept of choosing coordinator nodes
for data transfers in WAN links is beneficial for broad-
cast communications where only a single message has
to propagate to all nodes. In this case, choosing mul-
tiple nodes in a cluster to send messages to nodes
in another cluster will lead to poor performance of
broadcast operations. However, in allgather opera-
tion, different nodes in one cluster have distinct mes-
sages to send to nodes in another cluster. Making the
nodes send these distinct messages to the coordina-
tor nodes will lead to severe sequentialization of mes-
sages and act as bottlenecks in communications. In
our algorithm, we allow multiple simultaneous inter-
cluster transfers between any two clusters separated
by a WAN link.

3. Scheduling of current data transfers should be
based on previously scheduled data transfers.

In an allgather operation, a single node may be in-
volved in multiple data transfers corresponding to dif-
ferent messages from different sources. The data trans-
fers in allgather must be scheduled such that there is
enough parallelization in the work performed by differ-
ent nodes in different time steps. This helps in avoid-
ing node-level bottlenecks that can be caused when
processing multiple messages received by a node in a
single time step. Care must also be taken such that
different nodes perform equivalent amount of work in
different time steps. For example, Figure 1 depicts
a situation where a cluster has to broadcast two dis-
tinct messages obtained from remote sites during an
allgather operation. Two possible methods of broad-
casts are shown. The first method of broadcasts uses
the same tree for both broadcasts, whereas the sec-
ond uses two different trees. Assuming a homoge-
neous, fully connected network, unit transfer time for
data, single port full duplex connections (i.e. a host
can do at-most 1 send and receive simultaneously)
and a condition whereby a host can send data only
if the previous send is complete, the first method com-
pletes the broadcasts in ‘4’ time units and the second
method completes broadcasts in ‘2’ time units. Note
that the numbers along the data transfers (arrows) in-
dicate the time for completion of data transfer. It

is easy to observe that the second method carefully
avoids sequentialization of communication operations
within the nodes. Thus the communication schedules
for allgather have to be incrementally built by taking
into account the already scheduled data transfers to
avoid node-level bottlenecks.

4. COMMUNICATION MODELING
To estimate the time taken for an allgather operation and

for scheduling the next data transfer, the individual data
transfers need to be modeled. For modeling data transfers,
we use 4 network parameters corresponding to a message size
m - latency (L), bandwidth (b), overhead Send (os(m)) and
gap (g(m)). The gap parameter is defined as the minimum
time interval between consecutive message transmissions or
receptions [7]. We use parametrized-LogP benchmark [13]
to measure os(m) and g(m) and our own communication
benchmark program to measure L and b.

The next aspect of modeling relates to host-specific pa-
rameters. In an allgather operation, a single host may be
processing multiple messages from different source nodes.
Hence it is essential to determine the time at which a host
will be available for the next send and/or receive (recv).
There are two popular models to determine the host avail-
able times: single-port half-duplex [10] and single-port full-
duplex [2]. In the single-port half duplex model, a host can
either perform 1 send or 1 recv in a single time step. In the
single-port full-duplex model, the host can simultaneously
perform a send and a receive in a time step. Equations
1 - 3 show the calculations for times when a host, s, will
be available for the next send and receive, after sending a
message,m, to host,r. Equation 2 show the calculations as-
suming a half-duplex model and Equation 3 show the calcu-
lations assuming a full-duplex model. The following terms
are used in the equations:

• TotalTime[m] represents the time at which, r, re-
ceives the message.

• TransferTime[m,s,r] represents the time duration,
for transfer of message of size m form a host, s, to a
host, r.

• StartTime[m,s,r] represents the time corresponding
to the start of transfer.

• CommLinkAvailTime[s,r] represents the time at which
communication link from host s, to host r, is available
for transfer of next message. Note that this time is
independent of the time at which communication link,
from host r, to host s, is available for message transfer.

• HostAvailTime[h] represents the time at which host,
h, would be available for next send or recv. This pa-
rameter is used only in the half-duplex model.

• HostAvailTimeForSend[s,h] represents the time at
which the host s, is ready to send a message to the
host h. This parameter is used only in the full duplex
model.

• HostAvailTimeForRecv[h] represents the time at
which the host h, is ready to recv a message. This
parameter is used only in the full duplex model.

171

TotalT ime[m] = StartT ime[m,s, r]+

TransferT ime[m,s, r]

TransferT ime[m,s, r] = Latency(s, r)+

messageSize(m)

Bandwidth(s, r)

(1)

Single-port Half-duplex Model

StartT ime[m,s, r] = max(

CommLinkAvailT ime[s, r],

HostAvailT ime[s],

HostAvailT ime[r]

CommLinkAvailT ime[s, r] = StartT ime[m,s, r]+

g(m,s, r)

HostAvailT ime[s] = StartT ime[m,s, r]+

os(m, s, r)

HostAvailT ime[r] = TotalT ime[m]

(2)

Single-port Full-duplex Model

StartT ime[m,s, r] = max(

CommLinkAvailT ime[s, r],

HostAvailT imeForRecv[r],

HostAvailT imeForSend[s])

CommLinkAvailT ime[s, r] = StartT ime[m,s, r]+

g(m,s, r)

HostAvailT imeForSend[s] = StartT ime[m,s, r]+

os(m,s, r)

HostAvailT imeForRecv[r] = TotalT ime[m]

(3)

5. MIN3-ALLGATHER ALGORITHM
We propose a heuristic algorithm, Min3-Allgather for gen-

erating efficient schedules for allgather on grids. The algo-
rithm clusters the hosts participating in allgather accord-
ing to the bandwidth characteristics of the links between
the hosts, and identifies different levels of network hierar-
chies. Data transfers are then scheduled at each level of the
hierarchy using a recursive, top-to-bottom approach. The
following subsections give details of our algorithm.

5.1 Identification of Network Hierarchy or For-
mation of Pool Tree

As described in Section 3, we cluster the network and
identify network hierarchies. A cluster (or pool) is a set
of hosts, such that the average of bandwidths of links from
a host to all other hosts is greater than or equal to some
threshold bandwidth. Thus, smaller the threshold band-
width of a pool, greater the number of hosts in the pool.
The pools at high levels of network hierarchy (e.g. WANs),
have a low threshold bandwidth, and can be split into pools
with a higher threshold bandwidth. For example, a WAN
can be split into constituent LANs. Thus a pool may be split

(3 Mbps)

(10 Mbps)

Pool1

Pool2

LAN C (100 Mbps)

Pool 3

LAN A (100 Mbps)

Pool 4

LAN B (100 Mbps)

Pool 5

Figure 2: Example Pool Tree

recursively into sub-pools. This can be represented in the
form of a pool tree. Figure 2 shows a pool tree for a network
consisting of 3 LANs A, B and C. Pool1, also referred to as
root pool, consists of all the hosts in the network and has the
lowest threshold bandwidth - 3 Mbps. This is split into two
pools, Pool2 and Pool3. Pool2 has threshold bandwidth of
10 Mbps and, Pool3 has threshold bandwidth of 100 Mbps
and corresponds to LAN C. Pool2 is split into Pool4 and
Pool5. These correspond to LANs A and B respectively. To
calculate the bandwidth threshold values, we first obtained
bandwidth values between all pairs of machines. Then, we
sorted these values and created sets, such that bandwidth
values in a set are in a range of 10%. For each such set, we
found the maximum bandwidth value, and used the max-
imum values as thresholds for the formation of pool tree.
This procedure of formation of pools or clusters is similar to
the formation of “logical clusters” in earlier efforts by Es-
tefanel and Mounie [1] and Lowekamp et. al. [15]. These
efforts divide the network into subnets based on link laten-
cies and throughput. Our current work is complementary to
these efforts since our allgather algorithm can also use the
subnets formed by these efforts.

Given such a pool tree, the algorithm starts at the root
node of the pool tree, root-pool. Each host i belonging to
the root-pool has data di for broadcast to other nodes. As
a host can be included in only 1 sub-pool of a pool (in this
case, sub-pools of the root-pool), only 1 sub-pool has di. We
schedule data transfers such that every sub-pool of the input
pool (root-pool) will contain data di. To ensure “wide area
optimality” [14], data is transmitted exactly once to a sub-
pool. This implies that only 1 host in each sub-pool of the
input pool will contain di. However allgather operation is
complete only when all hosts have the data di. To ensure
this, we recursively schedule data transfers considering each
sub-pool as an input pool. The recursion stops when sub-
pools of the input pool are individual hosts.

Next we describe details of this algorithm. Section 5.2 de-
scribes the scheduling algorithm within a pool, and Section
5.3 describes the complete recursive algorithm.

5.2 Finding Allgather Schedule for Sub-Pools
of an Input Pool

Given an input pool, InputPool and its subpools, where
each host hosti is contained in one of the subpools of the
input pool, and has data di, the first step is to determine a
schedule of inter-subpool data transfers such that data di is
transferred to the other subpools. At the end of this step,

172

one host in every subpool will have data di. We denote the
set of di where i ∈ set of nodes participating in allgather as
DataSet. We denote the host in the input pool containing
data di as InitSource[di]. At the end of this first step, each
subpool will have the DataSet.

We introduce the following terms:

• Sources[di] represents the set of hosts that contain di.
Initially, this set contains only one host, InitSource[di].

• DestPools[di] represents the set of sub-pools of the in-
put pool, such that no host belonging to these sub-
pools, contains di. Initially this includes all sub-pools
of the input pool excluding the sub-pool containing the
source host.

• MinTime[di,j] is the minimum time by which di can
be transmitted to a host belonging to a sub-pool j be-
longing to DestPools[di].

• MinDest[di,j] represents the host belonging to sub-
pool j that can receive di in MinTime[di,j].

• MinSrc[di,j] is the id of a host in Sources[di], that can
send di to MinDest[di,j] in MinTime[di,j].

Function InitSched, shown in Figure 3, shows the ini-
tial calculation of these terms. InitSource[di] is added to
Sources[di] in line 3, DestPools are created in line 6. MinTime,
MinSrc and MinDest corresponding to transfer of di to a
SubPool is calculated by function FindMin.

Algorithm: InitSched()1

input : MsgSize, InputPool, DataSet, InitSource
output: Sources,DestPools, MinTime, MinDest,

MinSrc

for di ∈ DataSet do2

add InitSource[di] to Sources[di] ;3

for SubPool ∈ InputPool do4

if InitSource[di] /∈ SubPool then5

add SubPool to DestPools[di] ;6

/* let j be the index of SubPool in

DestPools[di] */

(MinTime[di,j], MinSrc[di,j], MinDest[di,j])7

= FindMin (di, Sources, SubPool, MsgSize) ;
end8

end9

end10

return (Sources,DestPools,MinTime, MinSrc, MinDest)11

;

Figure 3: InitSched()

Function FindMin, shown in Figure 4, calculates Total-
Time for transfer of MsgSize data, according to equations
1-3, for each sender in Sources[di] and each receiver in Sub-
Pool. It then finds and returns the minimum TotalTime,
MinTime, corresponding to a MinSrc in Sources[di] and
MinDest in SubPool.

After the above initial calculations, we schedule data trans-
fers using a greedy approach as shown in ScheduleInput-
Pool() function in Figure 5. We identify data, SchedData
and SchedPool such that MinTime[SchedData, SchedPool] is

Algorithm: FindMin()1

input : di, Sources, SubPool, MsgSize
output: MinTime, MinSrc, MinDest
MinTime = ∞ ;2

for s ∈ Sources[di] do3

for host ∈ SubPool do4

/* find TotalTime corresponding to

transfer of MsgSize data from s to

host */

if TotalTime < MinTime then5

MinTime = TotalTime ;6

MinSrc = s ;7

MinDest = host ;8

end9

end10

end11

return (MinTime, MinSrc, MinDest) ;12

Figure 4: FindMin()

Algorithm:ScheduleInputPool()1

input : MsgSize, InputPool, InitSource, DataSet,
mode

output: SchedFiles, Sources
(Sources,DestPools, MinTime, MinSrc, MinDest) =2

InitSched (MsgSize, InputPool, InitSource, DataSet) ;
while TRUE do3

SchedTime = ∞ ; ComeOut = TRUE ;4

for di ∈ DataSet && DestPools[di] �= φ do5

ComeOut = FALSE ; MinDestPoolTime = ∞ ;6

for p ∈ DestPools[di] do7

if MinTime[di,p] < MinDestPoolTime then8

MinDestPoolTime = MinTime[di,p] ;9

MinDestPool = p ;
end10

end11

if MinDestPoolTime < SchedTime then12

SchedTime = MinDestPoolTime ; SchedDest13

= MinDest[di,MinDestPool] ;
SchedSrc = MinSrc[i,MinDestPool] ;14

SchedPool = MinDestPool ;
SchedData = di ;15

end16

end17

if ComeOut == TRUE then break ;18

ScheduleTransfer (SchedSrc, SchedDest,19

SchedData, SchedFiles) ;
add SchedDest to Sources[di] ;20

remove SchedPool from DestPools[di] ;21

(MinTime, MinSrc, MinDest) = UpdateAfterSched22

(SchedData, SchedSrc, SchedDest , DestPools,
Sources, MsgSize, DataSet, Mode) ;

end23

Figure 5: ScheduleInputPool()

173

the minimum of all MinTime values returned by InitSched()
function. This involves applying minimization at 3 stages1.
In the first stage, we apply minimization in the FindMin()
function to calculate the minimum time required for trans-
fer of data di to a given subpool, SubPool. This is denoted
by MinTime[di, SubPool]. In the second stage, we find
the destination subpool for di, MinDestPool[di] such that
MinTime[di, MinDestPool[di]] is minimum over all destina-
tion subpools (lines 7-11), i.e.
MinSubPool∈allSubPools(MinT ime[di, SubPool]). In the third
and final stage, we find the data, SchedData , such that
MinTime[SchedData,MinDestPool[SchedData]] is minimum
over all all values of MinTime[di, MinDestPool[di]], i.e.
Mindi∈DataSet(MinSubPool(MinT ime[di, SubPool])) (lines
4-17). We denote MinDestPool[SchedData] as SchedPool.
We denote the source and destination hosts corresponding
to MinTime[SchedData,SchedPool] as SchedSrc and Sched-
Dest, respectively. We then schedule the data transfer of
SchedData between SchedSrc and SchedDest (line 19).

After the data transfer, SchedPool is removed from Dest-
Pools[SchedData], and SchedDest is added to Sources [Sched-
Data] (lines 20, 21). We also update the host model param-
eters for SchedSrc and SchedDest using equations 2 or 3, for
half-duplex or full-duplex model, respectively (line 22). The
function for updating the model parameters is shown in Fig-
ure 6. These updates lead to the invalidation of MinTime[di,
pool] if any of the following conditions are true.

• di is equal to SchedData (lines 2-6), SchedDest is the
new source of SchedData, and can be equal to Min-
Src[SchedData, p] for some pool, p.

• MinSrc[di,pool] is equal to SchedSrc or MinDest[di,
pool] is equal to SchedDest (line 10). As parameters
for SchedSrc and SchedDest are updated, MinTime,
MinSrc, MinDest for di and pool need to be updated.

• MinSrc[di,pool] is equal to SchedDest or MinDest[di,
pool] is equal to SchedSrc and the model used is Sin-
gle Port Half-Duplex (line 10). In this model, sends
and receives are sequentialized at a host, hence, the
times at which SchedSrc and SchedDest can receive
and send messages respectively are also updated. Thus
MinTime, MinSrc, MinDest for and pool need to be
updated.

We check for the above conditions for all di ∈ DataSet and
corresponding pools ∈ DestPools(di). If a condition is true,
corresponding values for MinTime, MinSrc and MinDest are
recomputed by calling FindMin function. Scheduling of data
transfers and updates are repeated till DestPools[di] is φ for
all di.

5.3 Finding Allgather Schedule for Pool Tree
For calculating the optimal allgather schedule for the en-

tire pool tree, we calculate the optimal schedule for the sub-
pools of the root pool in the pool tree using ScheduleInput-
Pool algorithm described above. Next for each sub-pool, we
identify the source host of each di within the sub-pool. Now
we call Min3-Allgather recursively treating each sub-pool as
an input pool. The recursion stops when the sub-pools of
the input pool are individual hosts. The recursive algorithm
is shown in Figure 7.

1Hence the name Min3-AllGather for the algorithm.

Algorithm: UpdateAfterSched()1

input : SchedData, SchedSrc, SchedDest, DestPools,
Sources, MsgSize, DataSet, Mode

output: MinTime, MinSrc, MinDest

/* Update host parameters for SchedSrc and

SchedDest according to mode */

if DestPools[SchedData] �= φ then2

for p ∈ DestPools[SchedData] do3

(MinTime[SchedData,p], MinSrc[SchedData,p],4

MinDest[SchedData,p]) = FindMin (SchedData,
Sources, p, MsgSize) ;

end5

end6

for di ∈ DataSet do7

if di == SchedData then continue ;8

for p ∈ DestPools[di] do9

if MinSrc[di,p] == SchedSrc ‖ MinDest[di,p]10

== SchedDest ‖ (mode == HalfDuplex && (
MinSrc[di,p] == SchedDest ‖ MinDest[di,p] ==
SchedSrc)) then

(MinTime[di,p], MinSrc[di,p], MinDest[di,p]11

) = FindMin (di, Sources, p, MsgSize) ;
end12

end13

end14

return(MinTime, MinSrc, MinDest) ;15

Figure 6: UpdateAfterSched()

Algorithm:Min3-Allgather1

input : MsgSize, Pool, DataSet, InitSource, mode
output: SchedFiles

(SchedFiles, Sources) = ScheduleInputPool(MsgSize,2

Pool, InitSource, DataSet, mode) ;
if NoSubPools(Pool) �= NoHosts(Pool) then3

for SubPool ∈ Pool do4

for di ∈ DataSet do5

for s ∈ Sources[di] do6

if s ∈ SubPool then7

SubPoolSources[di]=s ;8

break ;9

end10

end11

end12

Min3-Allgather(MsgSize, SubPool, DataSet,13

SubPoolSources, mode) ;
end14

end15

Figure 7: Min3-Allgather

174

6. EXPERIMENTS AND RESULTS
In this Section, we compare the performance of our Min3-

Allgather strategy with various existing strategies. These
existing strategies include generic allgather algorithms for
homogeneous networks including MPICH algorithm [17] and
Spreading Simple [8], network topology-aware methods for
grids by MagPIe [14] and MPICH-G2 [18] and strategies
that obtain allgather schedule for N nodes by combining N
broadcast trees corresponding to N distinct root nodes. For
obtaining allgather schedule from individual broadcasts, we
use broadcast trees generated by Mateescu [16] and Clus-
teredSA [9] algorithms.

We first describe our methodology of obtaining allgather
schedule for N nodes given N broadcast trees with N distinct
roots. We then describe a real Grid setup involving 3-sites
that we used for our allgather experiments. We then com-
pare our Min3-Allgather algorithm with the other strategies.

6.1 Allgather from Broadcast Trees
In this strategy, broadcast trees ti corresponding to broad-

cast of data di by each process pi, participating in allgather
are generated. To implement allgather, each process sends
and receives data on the basis of the generated broadcast
trees. For constructing an allgather schedule of N nodes
from N broadcast trees, a process pi can first post N-1 non-
blocking receives. pi can then send its data di to a set of
processes that are direct descendants of pi in broadcast tree
ti. We denote this set of direct descendants as DirectDe-
scendants(ti, pi). pi, on receiving data dk corresponding to
a posted non-blocking receive, can send dk to processes in
DirectDescendants(tk, pi). However, this implementation
results in poor performance, on ch p4 device for MPICH.
This is because the underlying behavior of MPICH gives
better performance if sends and receives are posted in the
order of their actual occurrence. This is corroborated in the
work by Benson et. al. [3].

To achieve better performance for allgather constructed
from broadcast trees, we use a min based algorithm for de-
termining the order of sends at each process. The algo-
rithm produces as output a set of files containing the or-
der of communications of different data segments for each
process. During allgather, the processes read from these
files and perform the communications in the specified order.
For calculating the transfer times used in the algorithm, we
utilized either Single Port Half Duplex or Single Port Full
Duplex model for communications.

6.2 3-Site Grid
In order to evaluate the efficiency of various strategies for

allgather on grids, we utilized a grid consisting of 3 sites: 1.
University of Tennessee (UT), Tennessee, USA, 2. Queen’s
University, Belfast, UK and 3. Vrije Universiteit, Nether-
lands. Details of machine specifications in each site is pro-
vided in Table 1. The bandwidths and latencies of the links
between these 3 sites were measured offline and are shown
in Table 2. This grid allowed us to test the performance of
algorithms under 3 different setups.

Setup 1. WAN Links across Continents: For these ex-
periments, we utilized machines from all sites.

Setup 2. WAN Links within a Continent: For these
experiments, we utilized machines from both the
European Sites, i.e. UK and Netherlands.

Table 1: 3-Site Grid Setup

Location Number
of ma-
chines

Specifications

Torc cluster,
University
of Tennessee
(UT), USA

8 GNU/Linux 2.6.8, Dual
PIII 933 MHz, 512 MB
RAM, 40GB Hard Drive,
100 Mbps Ethernet

Queen’s
University,
Belfast, UK

4 GNU/Linux 2.4.20,
AMD Athlon 1532 MHz,
1 GB RAM, 30GB Hard
Drive, Gigabit Ethernet

DAS-2, Vrije
Universiteit,
Netherlands

8 GNU/Linux 2.4.21, Dual
PIII 996 MHz, 1 GB
RAM, 20 GB Hard Drive,
100 Mbps Fast Ethernet.

Table 2: Inter-Site Bandwidths(Mbps) and Laten-
cies(Seconds)

UT UK NTH
UT 85.19,

0.00006
1.44,
0.05

1.25,
0.05

UK 1.28,
0.05

289.33,
0.000006

4.75,
0.076

NTH 1.16,
0.05

4.75,
0.076

81.86,
0.000006

Setup 3. LAN links within a Cluster: For these experi-
ments, we utilized machines from Netherlands site.

6.3 Comparison of Allgather Strategies
The total overhead in the generation of Min3-Allgather

schedules includes sorting the link bandwidths (sort), find-
ing bandwidth thresholds (thres), formation of pools or clus-
ters (pools), and determination of communication schedules
(sched) using the Min3-Allgather algorithm shown in Fig-
ure 7. The bandwidths on the links are determined using
offline measurements and efficient mechanisms exist for the
measurement and retrieval of the bandwidths [21]. Hence
the bandwidth determination is not included in our Min3-
Allgather total overhead. The costs for the various overhead
components in our algorithm for the 3 experiment setups are
shown in Table 3. The times reported for our Min3-Allgather
in this section were obtained by adding the corresponding
total overhead costs shown in Table 3 and the time taken
for performing the allgather using the generated schedules.

Figure 8 shows the comparison of allgather schedule gen-

Table 3: Overhead Costs (usecs.) of Min3-Allgather

Setup sort thres pools sched Total
Over-
head

Setup 1 326.86 15.71 392.29 282270 283010
Setup 2 50.7 9.3 85.8 166780 166920
Setup 3 36.75 9 19.25 108930 108990

175

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB

1

10

100

Msg Size (Bytes)

T
im

e
T

ak
en

 (
S

ec
on

ds
)

Total Times for Allgather with Different Algorithms on the 3−Site Grid using Single Port Half Duplex Model

Allgather using Mateescu Broadcasts
Allgather using clusteredSA Broadcasts
MagPIe
MPICH−G2

Min3−Allgather

(a) Single Port Half Duplex Model

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB

1

10

100

Msg Size (Bytes)

T
im

e
T

ak
en

 (
S

ec
on

ds
)

Total Times for Allgather with Different Algorithms on the 3−Site Grid using Single Port Full Duplex Model

Allgather using Mateescu Broadcasts
Allgather using clusteredSA Broadcasts
MagPIe
MPICH−G2

Min3−Allgather

(b) Single Port Full Duplex Model

Figure 8: Allgather Results for Complete 3-Site
Grid

eration strategies on the basis of average2 actual run times
for allgather for the complete grid setup on 3 sites. Except
for small message sizes, the performance of Min3-Allgather
strategy is better than all other strategies. The average per-
formance improvement of Min3-Allgather algorithm over all
the other algorithms is 42% for Half Duplex model and 52%
for Full Duplex Model. We also find that the MagPIe and
MPICH-G2 strategies give higher allgather times than the
allgather based on our earlier developed clusteredSA broad-
casts.

In order to understand the performance difference be-
tween the different algorithms for the 3-site grid setup as
shown in Figure 8, we measured the number of simultane-
ous communications on wide-area links during the execution
of allgather with a particular algorithm and message size.
Figure 9 shows the number of simultaneous WAN commu-
nications during the executions of allgather with 3 different
algorithms, namely, Min3-Allgather, Mateescu’s and Mag-
PIe’s, and for 2 message sizes, namely, 256 KB and 512
KB. The results correspond to using Full Duplex model for
communications. The x-axis represents the time progres-

2We take average of 4 run times

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

Time Progression (seconds)

N
um

be
r

of
 S

im
ul

ta
ne

ou
s

W
A

N
 C

om
m

un
ic

at
io

ns

Number of Simultaneous WAN Communications for Various Algorithms (256 KB)

Allgather by Mateescu Broadcasts

Min3−Allgather
MagPIe

(a) Simultaneous WAN communications for 256 KB

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Time Progression (seconds)

N
um

be
r

of
 S

im
ul

ta
ne

ou
s

W
A

N
 C

om
m

un
ic

at
io

ns

Number of Simultaneous WAN Communications for Various Algorithms (512 KB)

Allgather by Mateescu Broadcasts

Min3−Allgather
MagPIe

(b) Simultaneous WAN communications for 512 KB

Figure 9: Number of Simultaneous WAN Commu-
nications in Different Algorithms

sion of allgather executions. For example, Min3-Allgather
has the lowest time to completion than the other algorithms
as already seen in Figure 8. We measured the number of
simultaneous WAN communications by observing the start
and end times of the individual sends and receives relative
to the start of the allgather. The overlap in the ranges of
these start and end times gives an estimate of the number
of simultaneous communications3.

As shown in Figure 9, both Min3-Allgather and Mateescu’s
strategy perform more number of simultaneous WAN com-
munications than MagPIe’s. Although allgather using Ma-
teescu broadcasts perform more number of simultaneous WAN

3Since MPICH-G2’s allgather is implemented by
MPI Sendrecvs, we were not able to time the individ-
ual sends and receives and hence were not able to obtain
the number of simultaneous WAN communications. How-
ever the behavior of MPICH-G2’s allgather is similar to
MagPIe’s allgather and hence our general analysis of WAN
communications in MagPIe’s allgather will be applicable
for MPICH-G2’s allgather.

176

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB

1

10

20

Message Size (Bytes)

T
im

e
T

ak
en

 (
S

ec
on

ds
)

Total Times for Allgather with Different Algorithms on the European Sites using Single Port Full Duplex Model

MagPIe
MPICH−G2
Spreading Simple
MPICH

Min3−Allgather

Figure 10: Allgather Results for the European Sites
using Single Port Full Duplex Model

communications than our Min3-Allgather, the Mateescu’s
strategy is not wide-area optimal since it can send a data
segment multiple times over a same WAN link. Hence the
Mateescu’s strategy has large execution times as shown in
the large y-axis values in Figure 8 and large x-axis values
in Figure 9. Our algorithm is effectively able to exploit the
available bandwidths on WAN links and at the same time
ensures wide-area optimality. We also find that WAN com-
munications in the MagPIe’s allgather strategy start later
than in Min3-Allgather and Mateescu’s strategy. This is be-
cause in the initial stages of the MagPIe’s allgather, local-
area communications are performed to collect data at the
coordinator nodes of local clusters. Only in the later stages,
data is transferred between the coordinator nodes resulting
in WAN communications. Thus, large percentages of execu-
tions of MagPIe and MPICH-G2 do not utilize the wide-area
networks resulting in large execution times.

To evaluate the performance of our strategy on sub-parts
of the 3-site Grid, we conducted experiments on a partial
grid, consisting of the European machines (UK and Nether-
lands sites) and on a homogeneous cluster (Netherlands clus-
ter). In both these experiments we included popular homo-
geneous network allgather algorithms, namely, MPICH and
Spreading Simple. Figure 10 shows the comparison of dif-
ferent strategies for the European site. We can observe that
our algorithm gives better performance than the other algo-
rithms only for message sizes greater than 64 KB. Moreover,
when compared to the results for 3 sites, the results for the
2 European sites show lesser percentage performance im-
provement for Min3-Allgather over other algorithms. This
is because, in the 2-site setup, Min3-Allgather finds lesser
opportunities for the formation of clusters or pools based
on bandwidths and for multiple simultaneous transfers on
WAN links.

Figure 11 shows the comparison of allgather strategies for
a homogeneous network. Note that for this setting, we have
not included MagPIe and MPICH-G2 strategies, as they are
defined only for grids. For this setting, the algorithms devel-
oped for homogeneous networks perform much better. This
may be attributed to the fact that though Min3-Allgather
strategy is able to utilize more bandwidth on WAN links,
it does not generate best possible schedules for LAN links.
Hence our Min3-Allgather strategy is applicable to only Grid

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB

0.01

0.1

1

Message Size (Bytes)

T
im

e
T

ak
en

 (
S

ec
on

ds
)

Total Times for Allgather with Different Algorithms on the Netherlands Cluster
using Single Port Full Duplex Model

Spreading Simple
MPICH

Min3−Allgather

Figure 11: Allgather Results for the Netherlands
Cluster using Single Port Full Duplex Model

systems where the network consists of significant number of
WAN links.

7. CONCLUSIONS
We have developed an algorithm for efficient allgather,

a popular many to many collective communication opera-
tion, on grids. Our Min3-Allgather algorithm is both net-
work topology aware and network load adaptive. The al-
gorithm follows the design principles of clustering of nodes
based on transient network characteristics, parallel commu-
nications on wide-area links, and incremental construction
of communication schedules. Our algorithm achieves better
performance on grids, as it tries to exploit more available
bandwidths on WAN links as compared to other popular
approaches like MPICH-G2 [18] and MagPIe [12] and is also
wide-area optimal. Experiments indicate that we achieve
an average performance improvement of 52% over existing
strategies.

8. FUTURE WORK
We plan to build a service-oriented architecture that con-

structs application-oriented allgather communication sched-
ules similar to our previous work for broadcasts [9]. We
also plan to cache popular allgather communication sched-
ules. As network loading patterns on a Grid may be repeti-
tive, schedules from the cache could be reused, thus saving
re-computation of communication schedules. We also plan
to generalize our strategy for allgather to alltoall collective
communication that involves transmission of different data
to different processes. This presents unique challenges in
scheduling decisions as routing of data through intermedi-
ate nodes may not be beneficial.

9. REFERENCES
[1] L. B.-Estefanel and G. Mounie. Identifying Logical

Homogeneous Clusters for Efficient Wide-Area
Communication. In In Proceeginds of the Euro
PVM/MPI 2004, volume LNCS Vol. 3241, pages
319–326, 2004.

[2] O. Beaumont, V. Boudet, and Y. Robert. A Realistic
Model and an Efficient Heuristic for Scheduling with

177

Heterogenous Processors. In Proceedings of 11th
Heterogeneous Computing Workshop, 2002.

[3] G. Benson, C.-W. Chu, Q. Huang, and S. Caglar. A
Comparison of MPICH Allgather Algorithms on
Switched Networks, volume 2840/2003 of Lecture
Notes in Computer Science, pages 335–343. Springer
Berlin / Heidelberg, September 2003. Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, 10th European PVM/MPI Users’
Group Meeting.

[4] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and
D. Weathersby. Efficient Algorithms for All-to-All
Communications in Multiportmessage-Passing
Systems. IEEE Transactions on Parallel and
Distributed Systems, 8(11):1143–1156, November 1997.

[5] H. Casanova. Network Modeling Issues for Grid
Application Scheduling. International Journal of
Foundations of Computer Science (IJFCS),
16(2):145–162, 2005.

[6] E. Chan, R. van de Geijn, W. Gropp, and R. Thakur.
Collective Communication on Architectures that
Support Simultaneous Communication over Multiple
Links. In PPoPP ’06: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 2–11, 2006.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In Proceedings of the fourth ACM
SIGPLAN symposium on principles and practice of
parallel programming languages (PPoPP), pages 1–12,
1993.

[8] A. Faraj and X. Yuan. Automatic Generation and
Tuning of MPI Collective Communication Routines.
In ICS ’05: Proceedings of the 19th annual
international conference on Supercomputing, pages
393–402, 2005.

[9] R. Gupta and S. Vadhiyar. Application-Oriented
Adaptive MPI Bcast for Grids. In Proceedings of
International Parallel and Distributed Processing
Symposium (IPDPS’06), Rhodes Island, Greece, 2006.

[10] L. Hollermann, T.-S. Hsu, D. Lopez, and K. Vertanen.
Scheduling Problems in a Practial Allocation Model.
Journal of Combinatorial Optimization, 1(2):129–149,
1997.

[11] N. Karonis, B. de Supinski, I. Foster, and W. Gropp.
Exploiting Hierarchy in Parallel Computer Networks
to Optimize Collective Operation Performance.

In IPDPS ’00: Proceedings of the 14th International
Symposium on Parallel and Distributed Processing,
pages 377–386, 2000.

[12] T. Kielmann, H. Bal, S. Gorlatch, K. Verstoep, and
R. Hofman. Network Performance-aware Collective
Communication for Clustered Wide-area Systems.
Parallel Computing, 27(11):1431–1456, 2001.

[13] T. Kielmann, H. Bal, and K. Verstoep. Fast
Measurement of LogP Parameters for Message Passing
Platforms. In IPDPS Workshops, volume 1800 of
Lecture Notes in Computer Science, pages 1176–1183,
Cancun,Mexico, 2000.

[14] T. Kielmann, R. Hofman, H. Bal, A. Plaat, and
R. Bhoedjang. MagPIe: MPI’s Collective
Communication Operations for Clustered Wide Area
Systems. In PPoPP ’99: Proceedings of the seventh
ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 131–140, 1999.

[15] B. Lowekamp. Discovery and Application of Network
Information. PhD Thesis CMU-CS-00-147, Carnegie
Mellon University, 2000.

[16] G. Mateescu. A Method for MPI Broadcast in
Computational Grids. In IPDPS ’05: Proceedings of
the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 13,
page 251, Colorado, USA, 2005.

[17] Mpich2 home page.
http://www-unix.mcs.anl.gov/mpi/mpich2.

[18] MPICH-G2. http://www3.niu.edu/mpi.

[19] K. Park, H. Lee, Y. Lee, O. Kwon, S. Park, and S. K.
H.W. Park. An Efficient Collective Communication
Method for Grid Scale Networks. In Proceedings of the
International Conference on Computational Science,
pages 819–828, Melbourne, Australia and St.
Petersburg, Russia, June 2003.

[20] H. Saito, K. Taura, and T. Chikayama. Collective
Operations for Wide-Area Message Passing Systems
using Adaptive Spanning Trees. In Proceedings of The
6th IEEE/ACM International Workshop on Grid
Computing, 2005.

[21] M. Swany and R. Wolski. Building Performance
Topologies for Computational Grids. International
Journal of High Performance Computing Applications,
18(2):255–265, 2004.

[22] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of Collective Communication Operations
in MPICH. International Journal of High Performance
Computing Applications, 19(1):49–66, Spring 2005.

178

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

