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We present an adaptive Hindi OCR implemented as part of a rapidly retargetable language tool ef-
fort. The system includes: script identification, character segmentation, training sample creation,
and character recognition. In script identification, Hindi words are identified from bilingual or
multilingual documents based on features of the Devanagari script or using Support Vector Ma-
chines. Identified words are then segmented into individual characters in the next step, where
the composite characters are identified and further segmented based on the structural properties
of the script and statistical information. Segmented characters are recognized using generalized
Hausdorff image comparison (GHIC) and postprocessing is applied to improve the performance.
The OCR system, which was designed and implemented in one month, was applied to a complete
Hindi—English bilingual dictionary and a set of ideal images extracted from Hindi documents in
PDF format. Experimental results show the recognition accuracy can reach 88% for noisy images
and 95% for ideal images. The presented method can also be extended to design OCR systems for
different scripts.

Categories and Subject Descriptors: 1.5.2 [Pattern Recognition]: Design Methodology—Classifier
design and evaluation and pattern analysis; 1.7.5 [Document and Text Processing]: Document
Capture—Optical character recognition (OCR)

General Terms: Design, Documentation, Experimentation, Languages

Additional Key Words and Phrases: Optical character recognition (OCR), generalized Hausdorff
image comparison, script identification, document processing

1. INTRODUCTION

Digital document processing is gaining popularity for application to office and
library automation, bank and postal services, publishing houses, and commu-
nication technology. An important task of automatic document processing is
the reading of text. The procedure of automatically processing the text compo-
nents of a complex document which contains text, graphics, and/or images can
be divided into three stages: (1) region extraction and text region classification
using document layout analysis; (2) text line, and possibly word (glyphs sep-
arated by white space) and character segmentation; and (3) optical character
recognition (OCR). Typically, the OCR classifier stage needs to be redesigned
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for each new script, while the other stages are easier to port. OCR technology
for some scripts like Roman and Chinese is fairly mature and commercial OCR
systems are available with accuracy higher than 98%, including OmniPage Pro
from ScanSoft or FineReader from ABBYY for Roman and Cyrillic scripts, and
THOCR from Tsinghua University for Chinese.

Although commercial systems are available for Roman, Cyrillic, far east and
many middle eastern languages, such systems for Indian scripts, as well as
many low density languages are still in the research and development stage.
In some cases, this is due to technical challenges, but more often it is due to
a lack of a commercial market. Nevertheless, there is a real need for OCR in
these languages.

The DARPA TIDES program is supporting a project at the University of
Maryland that is focused, in part, on rapidly acquiring resources from printed
resources such as bilingual dictionaries. With the large number of different
languages all over the world, obtaining OCR systems of all these languages is
unrealistic. We need to be prepared to retarget OCR systems to be able to deal
with specific tasks including new languages or new scripts.

During a recent ‘Surprise Language’ task for TIDES that focused on Hindi,
we were faced with the challenge of rapidly acquiring Hindi OCR capabili-
ties. Since no feasible commercial OCR system was available, we set out to de-
velop one as rapidly as possible. In this paper, we present a Devanagari (Hindi)
OCR system using GHIC that was developed and trained in less than a month.
Trained using character samples extracted from different documents, the OCR
system can be easily adapted to perform Devanagari OCR of other fonts. Details
of a complete system for segmenting, parsing, and tagging bilingual dictionaries
can be found in Ma et al. [2003].

1.1 Background

Devanagari, an alphabetic script, is used by a number of Indian languages, in-
cluding Sanskrit, Hindi, and Marathi. Many other Indian languages use close
variants of this script. Although Sanskrit is an ancient language and is no
longer spoken, written material still exists. Hindi is a direct descendant of
Sanskrit through Prakrit and Apabhramsha, and has been influenced and en-
riched by Dravidian, Turkish, Farsi, Arabic, Portuguese, and English. It is the
world’s third most commonly used language after Chinese and English, and
there are approximately 500 million people all over the world that speak and
write in Hindi. Thus, research on Devanagari script, mainly the Hindi lan-
guage, attracts a lot of interest. In the rest of this paper, Hindi, the language,
and Devanagari, the script are used interchangeably.

Unlike English and other Roman script languages, Hindi has few, if any,
commercial OCR renders; and the ones that have products provide only custom
enterprise solutions. Chaudhuri and Pal proposed a Devanagari OCR system
that was ultimately purchased and is being marketed as a custom solution, but
is not yet available as an off the shelf product. The basic components of the
system, however were described in the literature [Chaudhuri and Pal 1997a;
Chaudhuri and Pal 1997b]. After word and character segmentation, a feature
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based tree classifier was used to recognize the basic characters. Error detection
and correction based on a dictionary search brought the recognition accuracy
of the OCR to 91.25% at the word level and 97.18% at the character level on
clean images. Bansal [1999], in his Ph.D. thesis, designed a Devanagari text
recognition system by integrating knowledge sources, features of characters
such as horizontal zero crossings, moments, aspect ratios, pixel density in nine-
zones, number, and position of vertex points, with structural descriptions of
characters. These were used to classify characters and perform recognition.
After correction, based on dictionary search, the average accuracy was about
87% at the character level for scanned document images.

It should be noted that both of the OCR systems mentioned above need
vast amounts of training data with ground truth to achieve acceptable levels
of performance. Collection and ground-truthing of data is time consuming and
labor intensive. Even so, before feeding a new font of a Hindi document to
the OCR, the system must be retrained to obtain reasonable accuracy. In our
application, we benefit from the need for only a small number of fonts for any
given dictionary. In this paper, we propose an approach to quickly build a Hindi
OCR. The segmentation of characters is similar to the approach proposed in
Bansal [1999] with minor changes, and the recognition is based on the GHIC,
which is like a template matching method but overcomes some disadvantages
of the traditional template matching approach. This OCR does not need to be
trained using a large number of training samples, and is easily adapted to
different types of documents.

The rest of this paper is organized as follows: Section 1.2 describes the sys-
tem architecture. Section 2.1 addresses how to identify the Devanagari words
from bilingual or multilingual documents. Section 2.2 describes the procedure
of character segmentation. Section 2.3 addresses the procedure of character
recognition and some postprocessing techniques. Section 3 provides experimen-
tal results. Summary, conclusion, and future work are discussed in Section 4.

1.2 System Design

Our Hindi OCR, designed to work on pure Devanagari, or bilingual and mul-
tilingual document images with one script Devanagari, is shown in Figure 1.
The system contains three different functional components: (1) document image
preprocessing including denoising and deskewing; (2) segmentation and script
identification at the word level; and (3) a classifier. In the following sections, we
will briefly describe the word level script identification and focus on the design
of the Hindi classifier.

The system first scans pages of Hindi text at 300 or 400 DPI. Images are
first preprocessed with denoising and deskewing [Ittner and Baird 1993; Hull
1998]. An implementation of DOCTRUM [O’'Gorman 1993] is applied to the
preprocessed images to segment them into zones, text lines, and words. Com-
ponents of the page are segmented into entries based on the functional fea-
tures of documents using the approach described in Ma and Doerman [2003a].
Figure 2 shows the segmented dictionary entries. Script identification is ap-
plied to the segmented word images to identify Devanagari script and Roman
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Fig. 1. System architecture.
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Fig. 2. Segmented entries of the Hind-English dictionary.

script words (including symbols neither Roman nor Devanagari). The identi-
fied Roman script word images are fed into a commercial English OCR, while
the Hindi word images are first segmented into characters, and the character
images are fed into a classifier to perform classification and recognition. After
postprocessing, the output of the Hindi OCR is combined with the OCR output
of Roman script to provide a complete result. The details of the approach and
results are described in the following sections.

2. TECHNICAL APPROACH

2.1 Devanagari Script Identification

Before describing what types of features can be used to identify Devanagari
script words from bilingual or multilingual document images, we examine the
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Fig. 3. Three strips of a Hindi word.

appearance of Devanagari script. Regular Hindi words can typically be divided
into three strips: top, core, and bottom. For the Hindi word @lin_c«l'ﬂ‘-r for example,
the five-character-word image is shown in Figure 3, where three strips are
illustrated. The top strip and core strip are always separated by the header
line, while there is no corresponding feature to separate the bottom strip and
core strip. The top strip contains the top modifiers, and the bottom strip contains
the lower modifiers. In a Hindi word, the top and bottom strips are not always
necessary, but depend on the top and lower modifiers.

We proposed an approach to identify scripts at the word level based on the
texture features, where the features were extracted using Gabor filters [Ma and
Doerman 2003b]. The performance of the approach can be improved by apply-
ing Supported Vector Machines (SVM), as found in Ma and Doerman [2004].
The approaches in Ma and Doremann [2003b; 2004], however, are designed
to be used to identify scripts under the assumption that the operator knows
nothing about the non-Roman script, and the only feature used to do script
identification is texture features extracted in 16 Gabor channels. For a specific
script, some nontexture features can be used to improve the performance, if
the system knows these features. The occurrence of a header line in a Hindi
word is such a powerful feature that it can be used to identify Hindi words
from bilingual or multilingual document images. For each segmented word
with width W and height H, we compute the horizontal projection (denoted
HP) of this word and then find the maximum value HPox and the position
PSnax 0of the maximum value. A word could be identified as a Hindi word if and
only if

HPmax > 0.8W
PSmax > 0.5H

In some documents, single Roman character such as E, e, R, T, t, I, P, D,
F, 1, Z, z, or B in a specific font face may also satisfy the above two criteria,
so these misidentification cases must be handled to improve the performance.
Considering the fact that in a regular document, all these characters except |
seldom appear as a single character, while | is usually much narrower than a
single Hindi character, these misidentifications are removed by setting a word
width threshold which depends on the font size and resolution of the document
image. Figure 4 shows the performance comparison of two script identification
approaches, SVM and the above-mentioned script-oriented approach on 20 ran-
domly picked pages. The results show both of the approaches work effectively
with average accuracy higher than 93%, and the latter is much higher with
average accuracy of 98.94%.
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Fig. 4. Accuracy comparison of two script identification approaches (random pages, sorted by
script-oriented accuracy).

Table I. Vowels and Corresponding Modifiers

Vowels | = |&T |5 ||| F | %= |0 | T | |3l

~ EN

Modifiers | I 1 o AR R T

¢

2.2 Character Segmentation

2.2.1 Devanagari Script Overview. Devanagari has about 11 vowels
(shown in the first row of Table 1) and about 33 consonants (shown in Table I1).
Each vowel except 2T corresponds to a modifier symbol as shown in the second
row of Table I. In Hindi, when consonants are combined with other consonants,
the consonant with a vertical bar may appear as a half form. Except for the
characters & and %, the half forms of consonants are the left part of original
consonants with the vertical bar and the part to the right of the bar removed.
These half consonants are shown in Table 111, where the order of characters
corresponds to the character order in Table I1. Table IV gives some examples of
combinations of half consonants with other consonants. The combination of half
consonants and other consonants are not always left-right structured. Some-
times the combination orientation is top-down, or even reorganized to become
a new character. Some of these examples of special combinations are shown in
Table V. In addition to these special combinations, some special Hindi symbols
are shown in Table VI. It should be noted that the list of special combina-
tions is far from complete, so handling all these cases needs to be addressed.
In Section 2.3.5, we will address how to deal with these special cases with an
operator’s feedback.
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Table Il. Consonants

Flw|T|T|F|T|F|FT|H|T| T
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Table I11. Half-Forms of Consonants With a

Vertical Bar
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Table IV. Examples of Combination of Half-Consonants and Consonants.

FThHIh | HATA | G767 | IoA=A | AT o9 | aded | Td9d | 998
TTg | AT | AWFT | A A | AT | TG | Tq A | T

Table V. Examples of Special Combination of
Half-Consonants and Consonants

FYH | WA | 225 | 223§ | AT | gaqg
TIg | ¥9§ | R9%E | WTH | aWE | gTTA

Table VI. Special Symbols
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Fig. 5. The procedure of Hindi character segmentation.

2.2.2 Hindi Character Segmentation. The procedure to segment a Hindi
word into characters (including core characters, and top and lower modifiers) is
illustrated in Figure 5 using the segmentation of the Hindi word ET&fd as an
example. The numbered arrows in Figure 5 represent the steps of segmentation,
and the characters with solid bounding boxes are the final segmentation results.
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The procedure to perform character segmentation can be described as follows:

Step 1: Locate the header line and separate the core-bottom strip that contains
the core strip and bottom strip, and a top strip that contains the header line
and the top modifiers.

Step 2: Identify the core strip and the bottom strip from the core-bottom strip,
and extract the lower modifiers.

Step 3. Separate the core strip into characters that may contain con-
junct/shadow characters.

Step 4: Segment the conjunct/shadow characters into single characters.
Step 5: Remove the header line from the top strip and extract the top modifiers.
Step 6: Put the header line back to the segmented core characters.

The details for each step are described below. We denote the width of the
Hindi word bounding box as W, the height as H, and the coordinates of the
left-top corner are set to be (0,0).

Step 1: Separate the top strip and the core-bottom strip. The separation of
the top strip and the core-bottom strip is based on the location of the header
line. For each word, we compute the HP and find the row (with Y-coordinate y)
having the maximum value of HP. This is the candidate of the header line
position. A header line candidate can be the real header line if y < 0.4H. If
this condition is not satisfied, then set the HP value of this row to 0 and research
the row with the maximum value until a real header line position is located.
The maximum HP value is marked as HPax, and the position of the header line
is marked as hPosition. Setting hPosition as the center, traverse the adjacent
10 HP values at each side of hPosition, and find the continuous rows whose
HP values are all greater than 0.8 HPax. The number of these continuous
rows is the stroke width of this word, which is marked as StrokeWidth, and
important for the postprocessing of segmentation. hPosition is updated as the
first row’s Y-coordinates of the header line. The header line separates the Hindi
word into the top strip, including the header line, and the core-bottom strip.
This procedure is shown in step 1 of Figure 5.

Step 2: Identify the core strip and the bottom strip from the core-bottom strip.
This procedure is briefly shown in step 2 of Figure 5. Denoting the width and
height of the core-bottom strip obtained in the last step as W, and H.,, and
using the Hindi word §9-(AT, which contains two lower modifiers, the detailed
procedure is shown in Figure 6, by dividing it into the following steps:

(1) Compute the vertical projection (VP) VP of the core-bottom strip
(Figure 6(a)).

(2) The columns with no black pixels separate the Hindi word into several
character candidates, which may contain conjunct/shadow characters or
even incorrectly segmented characters (Figure 6(b)).

(3) Find the maximum height of these characters and denote it Hyax. The sep-
arated characters are divided into three groups. The first group contains
all characters with height greater than 0.8Hn,.«, the second group contains
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Fig. 6. Extraction of the lower modifiers from the core-bottom strip. (a) The core-bottom strip and
its VP; (b) Separated characters based on the VP, the number under each character is its height,
and numbers with ‘*" are used to compute the threshold ht, = 22. Note that the second character
is segmented into two characters incorrectly, while that does not affect the final result; (c) Two
characters with a lower modifier and their HPs, where the two straight lines denote the separation
positions.

characters whose height is between 0.8 Hyax and 0.64 Hnax, and the remain-
ing characters are put into the third group. The group with the maximum
number of members is considered to contain normal characters without the
lower modifiers, and the maximum height of members in this group is set
as a threshold hty. If (He, — ht) > Hg/4, the word contains at least one
lower modifier (Figure 6(b)).

(4) For each separated character with a lower modifier, compute its horizontal
projection HP,.

(5) Inthe HP, obtained in the last step, setting hty, as the center, traverse the
adjacent five values at each side of ht,. The row with the minimum HP,
value is the boundary which segments the core-bottom strip character into
the core character and the lower modifier (Figure 6(c)).

Step 3: Separate the core strip into characters. In this step, the core strip
is separated into characters, and the conjunct/shadow characters, which need
further segmentation, will be determined as well. We borrow the definition
of shadow character from Bansal and Sinha [2002]. A character is said to be
under the shadow of another character if they do not physically touch each
other but it is impossible to separate them merely by drawing a vertical line.
In their paper, Bansal and Sinha proposed an approach to separate the core
strip into characters and determine the conjunct/shadow characters based on
the statistical information (such as average width, minimum and maximum
width) of characters on the text line. The approach obviously cannot model our
case because in the bilingual documents, Hindi words and English words are
usually interlaced. It is impossible to obtain one Hindi text line that contains
words with the same size. Therefore, we separate the Hindi word into characters
and determine conjunct/shadow characters based on the statistical information
obtained from the current Hindi word. Before extracting the information, it
must be noted that the modifier T in the Hindi word has a much smaller width
than the regular characters after removing the Header line, so this character
cannot be applied in the computation of statistical information of character
width. Fortunately, this character is easily located based on the obtained stroke
width in the first step. The separation of the core strip and the determination of
conjunct/shadow characters are shown in step 3 of Figure 5, where one conjunct
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TEAATH ¢4l SHA &
(a) (b) (c) (d)

Fig. 7. Conjunct/shadow character determination. (a) Original word image (located header line
provides StrokeWidth = 6); (b) Five characters separated based on the VP, with width 26, 51, 28,
7, 32 respectively; (c) Three characters used to compute the average width, with width 26, 28, 32
respectively, where Wi, = 26 and Wayg = 28.7; (d) Detected conjunct character (with width 51).

character is located. Taking the segmentation of another Hindi word S&=aTe
as an example, the detailed procedure is shown in Figure 7 and can be describe
as

(1) Using the method in step 2, separate the core strip into characters based
on the VP (Figure 7(b)).

(2) For each separated character, if its width is smaller than 2 StrokeWidth,
consider this as T and remove it.

(3) Find the minimum width of remaining characters and denote this as Wp;n.

(4) For each remaining character, if its width is greater than 1.5Wy,i,, remove
this character because it may be a conjunct/shadow character which can
affect the statistical information significantly (Figure 7(c)).

(5) After removing the too-narrow and too-wide characters, compute the aver-
age width of the remaining characters and denote it as Wayg.

(6) Traverse all the separated characters, each character with width wider than
1.2Wag is considered a conjunct/shadow character which needs further seg-
mentation (Figure 7(d)).

Step 4: Segmentation of the conjunct/shadow character. The segmentation of
a conjunct character is complicated, and because of the different characteristics
of conjunct and shadow characters, the segmentation operations of the conjunct
character and the shadow character are different. They are described as follows.

Segmentation of the conjunct character. The basic idea to segment the con-
junct character is to find the segmentation column from both the right and the
left sides of the word image and then determine the final segmentation posi-
tion by comparing these two segmentation columns. After examining all the
consonants, we found the following four observations:

(1) In each conjunct character, the right part is a full consonant that is wider
than the left part, and the left part is always a half consonant.

(2) For each consonant that can be combined with a half consonant to create a
conjunct character, after removing the header line, the vertical bar and the
right part to the right of the vertical bar (if there is a vertical bar), the HP
of the remaining part is always connected without any discontinuity.

(3) Neither of the two parts of a conjunct character can be too short.

(4) The pixel strength in the touching column of the two characters is usually
less than that of other columns.
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Fig. 8. Segmentation of the conjunct character (to find C1). (a) The conjunct character image; (b)
The remaining character image with vertical bar removed,; (c) Steps to search for C1.

So the design of the segmentation algorithm that contains three steps is
based on the above four observations. In the first step, segmentation column
Clislocated by examining the right part of the conjunct character image (based
on observations (1), (2), and (3)). Then in the second step, segmentation column
C2 is located by examining the left part of the conjunct character image (based
on observations (1), (3), and (4)). In the last step, the final segmentation column
C is determined by comparing C1 and C2.

In this paper, we use the same idea of computation of the collapsed horizontal
projection (CHP), which was defined by Bansal and Sinha in their paper to
detect the continuity of an inscribed image. The basic idea of CHP is: for each
row of the inscribed image, if one foreground pixel can be found, then set the
projection of this row 1; otherwise set the projection of this row 0. The detailed
definition of this concept can be found in Bansal [1999] and Bansal and Sinha
[2002]. The operations in the three steps are described in the following.

Locate the segmentation column C1: Illustrated in Figure 8, the procedure to
locate the segmentation column C1 can be described as

(1) Check if there exists a vertical bar in the right part of the image by com-
puting the VP of the right half part of the conjunct image.

(2) Ifthereisavertical bar, the bar and the image part to the right of thisbar are
removed from the conjunct image. The new image is shown in Figure 8(b).

(3) Suppose the right boundary of this new image is nRight, then the initial
C1l is set at one stroke width to the left of nRight. Inscribing the right part
of the image between C1 and nRight, the CHP of the inscribed image is
computed.

(4) If the CHP has no discontinuity and the inscribed image is higher than
H/3, C1 is the segmentation column and stop the searching procedure.

(5) Otherwise, shift C1 one column left and repeat the above computation until
the C1 that satisfies the above criteria is found.
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Fig. 10. Example of conjunct character with two vertical bars.

This searching procedure is shown in Figure 8(c), where the first two in-
scribed images have discontinuity, and the final C1 is shown in the last image.

Locate the segmentation column C2: As we mentioned in Section 2.2.1, most
of the half consonants have no vertical bar, but there exist two consonants % and
& whose half forms also have a vertical bar. The appearance of the vertical bar
can affect the final segmentation column searching result. So before setting the
initial segmentation column C2, we need to check the occurrence of the vertical
bar in the left half part of this conjunct image based on the VP. If no vertical
bar is found in the left part of the image, the initial C2 is set at W /3, where W
is the width of this conjunct image. The searching of the segmentation column
C2 is described as

(1) Suppose the left boundary of this conjunct image is nLeft, the height of the
inscribed image between nLeft and W /3 is computed.

(2) Ifthe computed height is less than H/3, then C2 is shifted one column right.
If the inscribed image is higher than H/3, then C2 is shifted one column
right only if the pixel strength of the new column is not greater than the
present column. The pixel strength of the column is defined as the number
of black pixels in this column.

(3) Iterate the above steps until a segmentation column C2 that meets the
requirement is located.

This procedure is shown in Figure 9, where the inscribed image is always
higher than H/3, and the strength for the next column is shown in all three
subfigures.

If there is a vertical bar in the left part of the image, suppose the right column
of the bar has location bRight, then the initial segmentation column C2 is set
as bRight+1. Since the height of the inscribed image between nLeft and C2 is
always higher than H/3 in this case, C2 is shifted one column right only if the
pixel strength of the new column is not greater than the present column. One
example is shown in Figure 10.

Considering the observation (1), C2 must be smaller than W /2, which puts
another stop condition for the determination of C2.
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(©) (d)

Fig. 11. Segmentation of the shadow character. (a) Determination of the shadow character;
(b) Bounding box of the connected component (the right character); (c) Bounding box of the left
character; (d) Segmented characters.

Determine the segmentation column C by comparing C1 and C2: If a detected
conjunct character is a real conjunct character, the found segmentation columns
C1 and C2 should be very close. And considering the stop conditions of the
searching iterations of C1 and C2, C1 cannot be less than C2 for a real conjunct
character. So in this step, the decision of segmentation column C is made based
on the following three situations that could be encountered:

(8) C1is less than C2: Detected character is not a real conjunct character, so
no further segmentation is needed.

(b) C1is greater than C2 and C1, C2 are very close: If the difference between
C1 and C2 is less than the stroke width, then the segmentation column C
is set as the average of C1 and C2.

(c) C1isone or more than one stroke width larger than C2: The segmentation
column C is set as the column that is one stroke width left of C1, and only
the right part will be extracted. The remaining left part will be considered
as a new conjunct character image and further segmentation is needed.

Segmentation of the shadow character. The detection of a shadow character
is straightforward. First, we find the left most pixel of the character image. Then
the connected component starting from this pixel is detected and the bounding
box of this connected component is computed. If the right value of this bound-
ing box is less than the right value of the original character image, then this
character is considered a shadow character, which needs further segmentation.
The segmentation of a shadow character is clearly shown in Figure 11. There
are not many shadow cases in the Hindi words. Usually in the shadow char-
acter image, the right character is a character that can be represented as one
single connected component. So the segmentation of a shadow character starts
from the right side of the image. First, we find the right most black pixel of
the image, then find the connected component starting from this pixel using
8-neighbor tracing. The connected component is considered the right character
and separated from the original image. The left character is the remaining part
with the detected connected component removed.

It should be noted that the above mentioned segmentation can also be ex-
tended to the segmentation of the shadow top modifiers (the lower modifiers
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Y o Y a

Fig. 12. Examples of shadow top modifiers.

usually do not have shadow situations). Three examples of shadowed top mod-
ifiers are shown in Figure 12.

Step 5: Extract the top modifiers. The extraction of the top modifiers from
the top strip (show in step 5 in Figure 5) is simple and straightforward. The
header line is removed from the top strip first, then the VP of the remaining
strip is computed. The boundary of a top modifier is located based on the column
without any black pixels. There are some special cases that two top modifiers
may touch each other, and they are separated as one single top modifier. Further
segmentation of the top modifiers will be handled as a special case, which is
described in Section 2.3.5.

Step 6: Put the header line back into the segmented characters. This step
is straightforward, where the header line is put back to each segmented core
character for the recognition in the next step.

In the above description of operations in all steps, there are some constants
defined. Some of the constants depend on the natural characteristics of the
Hindi character, such as the factors 0.4, 0.8, 0.64, 1.2, 1/4, 1/3, and 1/2, which
are usually fixed even for different fonts or different sizes of Hindi words. There
are also some constants (such as the 5 and 10 when traversing the projection
profile), which depend on the sizes of Hindi words, we chose these constants
based on the experimental results, they can be fixed as long as the font has the
standard font size used in regular documents, or they can be changed based on
the new font size.

2.3 Recognition

In a typical OCR system, feature extraction is probably the most important
step to achieve high performance of character recognition. Devijver and Kittler
[1982] defined feature extraction as the problem of “extracting from the raw
data the information which is most relevant for classification purposes, in the
sense of minimizing the within-class pattern variability while enhancing the
between-class pattern variability.” Considering the fact that there typically ex-
ist many variations of the same character, a good feature for character recog-
nition should be invariant to transformations such as scale and rotation. Some
feature extraction methods work on grayscale images, whereas others work on
binarized images, vector images (thinned skeletons), or outer symbol contour.
Trier et al. presented an overview of feature extraction methods for recognition
of segmented (isolated) characters [Trier et al. 1996]. OCR approaches can be
briefly classified into template matching, transform, zoning, or moment based.

The recognition of Hindi characters is based on the Hausdorff image com-
parison. Huttenlocher et al. [1993] proposed efficient algorithms of computing
Hausdorff distance to compare the resemblance between two binary images
with the assumption that there is only a translation between two images. In
this paper, the GHIC is applied to determine the resemblance of one segmented
character (a point set) to another character (a template point set), by examining
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the fraction of points in one set that lie near points in the other set, and vice
versa. There are two parameters used to determine the degree of resemblance of
two point sets: (i) the maximum distance that points can be separated and still
be considered close together; and (ii) what fraction of the points in one set are at
most this distance away from points of the other set. Hausdorff-based distance
measures are different from the correspondence-based matching techniques in
that there is no pairing of points in the two sets being compared [Huttenlocher
et al. 1993]. Often in matching and recognition problems, the two images are
allowed to undergo some kind of geometric transformation in the matching
process. In this case we are concerned with finding the transformations of one
image (character image) that produces good matches to the other image (tem-
plate image). In the following subsections, we give a brief introduction of GHIC.

2.3.1 Generalized Hausdorff Image Comparison. Given two sets of points
A={a,...,an}and B = {by, ..., b,}, the Hausdorff distance is defined as

H(A, B) = max(h(A, B), h(B, A)),

where h(A, B) = maXaea Mingep ||a — b|l. The function h(A, B) is called the
“directed Hausdorff distance” from A to B (this function is not symmetric and
thus is not a true distance). It identifies the point a € A that is farthest from
any point of B, and measures the distance from a to its nearest neighbor in B.
Thus the Hausdorff distance, H(A, B), is actually used to measure the degree of
mismatch between two image point sets, as it reflects the distance of the point
of A that is farthest from any point of B and vice versa.

The Hausdorff distance is very sensitive to even a single outlying point of
A or B. For example, consider A = B U x, where the point x is some large
distance D from any point of A. In this case H(A, B) = D, which is determined
solely by the point x. Considering the fact that scanning images are often noisy
with different quality, directed Hausdorff distance is not powerful enough to
provide a satisfying match between two character images. Therefore, when
performing the recognition, rather than using H(A, B), a generalization of the
Hausdorff distance (which does not obey the metric properties on A and B,
but does obey them on specific subsets of A and B) is used. This generalized
Hausdorff measure is given by taking the kth ranked distance rather than the
maximum, or largest ranked one:

hi(A, B) = kgL, min ja —bj,
where kth denotes the kth ranked value (or equivalently the quantile of m val-
ues). For example, when k = m, then kth is max. When k = m/2, then the
median of the m individual point distances determines the overall distance.
Therefore, this measure generalizes the directed Hausdorff measure, by re-
placing the maximum with a quantile.

For character recognition, we are interested in using the Hausdorff distance
to measure the similarity of one image bitmap I (the character image) with some
‘model’ bitmaps M (character templates or samples), under the assumption that
only translation transformation can exist between these two matched bitmaps.
In other words, we seek all translations t € R? such that hy(M +t, 1) < 8. The
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parameter k tells us how many of the model points should be near image points
in order to classify a given translation as a potential matching instance of the
model (i.e., we allow m — k of the m model points to be outliers). The parameter
§ tells us how close each nonoutlying model point must be to some image point.
In our work, the parameter k is dependent on the scanning image quality, while
parameter § is determined based on the shape variability of same characters
in different context.

In order to find each translation such that hy (M +t, 1) < §,weform I’ = 1 4+-C;
and then compute the correlation of M with I’. For each translation t of M
with respect to 1/, the correlation determines p, how many points of M +t are
superimposed with 1’ (the logical and of M + t and I'). If the point number
p of one translation is greater than or equals k (i.e., p > k), then the current
model M with translation t is considered a match to I, that is, hy(M +t, 1) < §
is satisfied. We refer to p/m as the Hausdorff fraction for a given translation
t (at some fixed §). The Hausdorff fraction measures the percentage of M +t
that lies near (within §) points of I, which in some sense provides the degree
of similarity of two image point sets and can be used to provide the confidence
value of recognition.

The computation of hy(M + t, 1) < § alone does not necessarily find good
matching of M in I, rather it finds portions of | that could contain M plus
some other points. For instance, with black the foreground pixel, a totally black
image will match any model at any translation. Thus, we absolutely need to
use the other direction of the generalized Hausdorff measure, hy(M + t, 1),
to ‘verify’ those translations where it was found that hy(M +t, 1) < §. This
reverse Hausdorff fraction, ensures that a given portion of the points in the
image (covered by the model array) are actually near points of M +t. It thereby
rules out situations such as a totally black image match any other images.

The details of the GHIC can be found in Huttenlocher et al. [1993]. In our
recognition, the forward and reverse distance thresholds are specified to com-
pare the resemblance between a character and the templates. Under the con-
straint of the two thresholds, there may still be more than one character that
satisfies the conditions, thus the forward and reverse Hausdorff fractions are
used to prune the character candidates. Furthermore, in our work, we also set
two thresholds of these two fractions. The sum of the forward and reverse Haus-
dorff fraction is used to compute the confidence (half of the sum which has value
between 0.0 and 1.0) of character recognition, and the confidence value is used
for follow on processing, which will be discussed in Section 4.

2.3.2 Normalization of Template and Character Images. Since we only con-
sider the translation when computing the generalized Hausdorff image mea-
sure to perform recognition, there is no way that the same character in different
sizes could be matched. One solution to solve the scaling problem is image nor-
malization, that is, the template and character images fed into the system must
be normalized before computing the Hausdorff distance. In our work, we em-
ploy a simple normalization based on the long edges of images, which normal-
ize all core characters into images with long edge 32, and normalize all top and
lower modifiers into images with long edge 16 while preserving the aspect ratio.
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Table VII. Classes of Core Hindi Characters

Open header ST
One conjunction end bar TIAATATT
More conjunctions end bar TEIAITHEINTH
Middle bar S T
No bar EIFUTHIISTTALES T
Special case T Irir

Denoting the image’s dimensions as W (width) and H (height), the normaliza-
tion procedure is:

Dmax = max(W, H)

if low or top modifiers, then

Factor = 16/ Dmax

else

Factor = 32/Dpax

NW = W x Factor, NH = H x Factor

Resize the image into a new image with size NW x NH

The constants 16 and 32 are not very important in the normalization step, we
can also change this value into a variable which is dependent on the average
size of character images.

2.3.3 Classification of Characters. A vertical bar does not appear at the
left end of a Hindi character. If a vertical bar is present, it either appears at the
right end (End Bar) or in the middle (Middle Bar) of a Hindi character. Based
on the presence and position of the vertical bar and the conjunction number of
the character with the header line, all the core Hindi characters can be divided
into the following six groups shown in Table VII.

The four characters T, 9T, I, T in the Special Case class are characters with an
end bar, but after removing the header line and computing the VP, each of these
four characters will be split into two parts. The over-segmentation is handled in
the next subsection. The character T in the No Bar class is also special because
it is the only No Bar character which has more than one conjunction with the
header line.

2.3.4 Over-Segmentation Processing. In the above character segmentation
procedure, there could exist over-segmentation of characters, that is, one single
character could be segmented into two or more parts. Based on the direction
of over-segmentation, we divide this into two types, horizontal and vertical
direction, and handle them separately.

The over-segmentation in the vertical direction only happens to long char-
acters such as U & and other strongly combined forms of consonants such as
2., 8, 8,8, and §. After being segmented into two parts, the bottom part is
usually rejected or incorrectly recognized during the procedure of recognition.
This type of over-segmentation is handled by adding the over-segmented top
part into the templates and assigning them special codes. Once recognized, we
know this is an over-segmented character, its following part will be put back.
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g USRS

Fig. 13. Examples of over-segmented characters added in the template. (a) Over-segmented char-
acters; (b) Original characters.

L R R

Fig. 14. Examples of touching modifiers.

For example, Figure 13(a) shows some of the over-segmented characters we
added to our templates, and characters in Figure 13(b) are the original com-
plete forms.

The handling of over-segmentation in the horizontal direction is a little more
complex because of the half consonant. Taking the four characters in the Special
Case class, their half forms happen to be the left part of the over-segmented
parts. The determination of an over-segmented character depends on the result
that if the following character is character T or not. In these four cases, if they
are over-segmented, then the next character can only be character T, but this
cannot be determined until the next character has been recognized. We leave the
handling of this type of over-segmentation to the ‘Ligature processing’ section.

2.3.5 Dealing with Special Characters. As mentioned above, it is not pos-
sible to add all of the special characters to the template because many of them
are rarely used. In addition, adding more templates will significantly slow down
the recognition. In our work, we provide a very simple scheme which allows the
operator to add new special characters easily, which means the recognizer can
easily be tuned to adapt to new cases. If the operator finds one new character,
he first classifies this character (end bar, middle bar, no bar, and so on) and puts
this into the corresponding file that includes the template nhame and unicode
of this character. Then he simply cuts this character from the image, saves it
into a TIFF file and puts the filename into the training template directory. The
recognizer will automatically read templates from the file and perform recog-
nition. The recognition of all of the special characters listed in Tables V and VI
were handled in our system.

Due to the quality of scanned document images, two or more top modifiers
may touch each other, which cannot be segmented using the approach described
above. Some of these touched top modifiers are shown in Figure 14. These
touched top modifiers are considered as special top modifiers, which are added
to the class of top modifiers. Fortunately, there are not many such cases, so this
case can be easily handled.

2.4 Ligature Processing

Devanagari characters, like characters from many other scripts, can be com-
bined or change shape depending on their context. A character’s appearance is
affected by its relation to other characters, the font used to render the character,
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and the application or system environment. These special characters are han-
dled in Section 2.3.5.

Additionally, a few Devanagari characters may resultin a change in the order
of the displayed characters. This reordering is not commonly seen in non-Indic
scripts. One such character is f, which is always displayed one consonant left
of its real position. When exporting the codes of one Hindi word with such a
character, the codes of characters must be reordered.

The Devanagari script is noted for a large number of consonant conjunct
forms that serve as orthographical abbreviations (ligatures) of two or more
adjacent letter forms. This abbreviation takes place only in the context of a
consonant cluster.

Some independent characters such as §, T, =T, 3T, 2, T, and T have a top
strip which is segmented and classified as top modifiers. When exporting the
encoding of these characters, the top modifier should be put back into the cor-
responding core character to generate a correct code.

Independent characters such as T, =T, 2 will be segmented into =7 plus
T, T.T. When exporting the encoding of these characters, the separated parts
should also be put back to generate one correct single code.

All the above schemes are handled in our system. Since most of them are
caused by the ligature of Devanagari script, we discuss this in the ‘Ligature
processing’ part.

3. EXPERIMENTAL RESULTS

3.1 OCR Evaluation

The proposed system was applied to the 1083 pages of the Oxford Hindi—-English
dictionary [McGregor 1993] and to a collection of PDF-converted Hindi doc-
ument images. The dictionary binding was burst and scanned at 400 DPI.
The PDF-converted Hindi document images are obtained directly from the
PDF without the introduction of scanner noise, so they are considered ideal
images.

An example of the scanned dictionary image is shown in Figure 15, where
(a) is the original image, and (b) shows the identified Hindi words (with errors)
and the segmented characters. The OCR result which combines the Hindi OCR
and the Roman OCR is shown in Figure 16.

To evaluate the accuracy of this OCR, we randomly chose seven pages and
counted the number of Hindi words and characters recognized. The result eval-
uation is shown in Table VIII.

From Figure 15, it can be seen that the identified Hindi words can be correctly
segmented into isolated characters using the proposed approach. The evalua-
tion result shown in Table V111 shows the recognition accuracy at the character
level reaches 87.75%, while the accuracy at the word level reaches about 67%.
The experiment was done on scanned images, which obviously contain noise,
and the result is the pure recognition result without any spell checking and
word correction based on dictionary search. We strongly believe, with the avail-
ability of Hindi language constraints and electronic text, correction techniques
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EqRAT  rapakna [*tapp-], v.i. 1. to drop, to
drip; to dribble; to exude; to leak. 2. to fall
(fruit). 3. to appear (suddenly). 4. to be
evident (emotion, or a disposition). §. to be
abundant in, to suffuse (as youth the body).
6. to long or to yearn (the heart).

AR rapka [cf. H. rapaknal, m. 1. dropping,
dripping. 2. a drop, drip. 3. transf. a throbbing
pain. 4. a windfall (fruit; esp. a mango).

—_ z9% %1, adj. fallen, ripe (fruit). — TTHT-ZIH,
f. continuous dropping or dripping; a trickle;
drizzle.

SARTAT  rapkana [cf. H. tapakna], v.t. to
cause to drop, or to drip; to distil.
AR apkav [cf. H. tapakna], m.
1. dripping. 2. causing to drip; distilling.
QAT iapna [cf. H. tapna], v.i. 1. to leap, to

jump (over or across). 2. to wait (unfed, or
with hopes unfilfilled).

QTN apana [cf. H. tapnal, v.t. 1. to cause
to leap, or to bound. 2. to keep (one) waiting.
3. colloq. to filch; to smuggle (sthg.) away.

ST iappar [cf. *tarpa-'], m. reg. 1. a thaich;
W. thatched house. 2. canopy (of a cart).
3. Bihar. matting.

(a)

Huanfeng Ma and David Doermann

EMEN apakna [*rapp-, v.i. 1. to drop, to
drip; to dribble; to exude; to leak. 2. to fall
(fruit). 3. to appear (suddenly). 4. to be
evident (emotion, or a disposition). 5. to be
abundant in, to suffuse (as youth the body).
6. to long or to yearn (the heart).

S9N ;apka [cf. H. rapaknal, m. 1. dropping,
dripping. 2. a drop, drip. 3. transf. a throbbing
pain. 4. a windfall (fruit; esp. a mango).

2% =, adj. fallen, ripe (fruit). — EERI-zuE,
f. continuous dropping or dripping; a trickle;
drizzle.

SN rapkana [cf. H. tapaknd], v.t. 10

cause to drop, or to drip; to distil.

EMMA :apkav [cf. H. rapaknal, m.
1. dripping. 2. causing to drip; distilling.

EAT tapna [cf. H. rapnal, v.i. 1. 1o leap, to
jump (over or across). 2. to wait (unfed, or
with hopes unfilfilled).

EAMMN apana [cf. H. apnal, v.t. 1. to cause

to leap, or to bound. 2. to keep (one) waiting.
3. colloq. to filch; to smuggle (sthg.) away.

@M appar [cf. *tarpa-'], m. reg. 1. a thaich;
Y. thatched house. 2. canopy (of a cart).
3. Bihar. matting.

(b)

Fig. 15. One example of the bilingual dictionary. (a) Original image; (b) Identified Hindi words

and character segmentation.

SYUHT tapakmd {*app-J, v.i. 1. to drop, to

drip; to dribble; to exude; to leak. 2. to fall
(fruit). 3. to appear (suddenly). 4. to be
evident (emotion, or a disposition). 5. to be
abundant in, to suffuse (as youth the body).

6. to long or to yearn (the heart).

EqEESLT tapka [cf. H. tapakna], m. 1. dropping,
dripping. 2. a drop, drip. 3. transf. a throbbing

pain. 4. a windfall (fruit; esp. a mango).

- TUD HT, ad;. fallen, ripe (fruit). - TAHTSTDHIT,

f. continuous dropping or dripping; a trickle;

drizzle.

SYURTH tapkav [cf. H. tapaknd], m.
1. dripping. 2. causing to drip; distilling.
CUTT tapnd [of. H. tdpnd], v.i. 1. to leap, to

jump (over or across). 2. to wait (unfed, or

with hopes unfilfilled).

SUTHT tapand [¢£ H. tapna], v.t. 1. to cause

to leap, or to bound. 2. to keep (one) waiting.

3. collog. to filch; to smuggle (sthg.) away.
’c’ﬂ}l’( tappar [¢f. ¥arpa-' ], m. reg. 1. a thatch;

QEQT thatched house. 2. canopy (of a cart).

3. Bihar. matting,

Fig. 16. OCR results of images shown in Figure 15 (Reconstructed by combing Hindi and Latin

results).
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Table VIII. Result Evaluation of the Hindi—English Dictionary

[ Pages || Chars | Recognized | Correct [ A1 [ A2 ][ Words | Correct [ A |
p0098 451 443 407 90.24% | 91.87% 110 79 71.82%
p0160 317 311 272 85.80% | 87.46% 73 54 73.97%
p0179 480 477 409 85.21% | 85.74% 113 67 59.29%
p0401 294 290 264 89.80% | 91.03% 71 53 74.65%
p0799 437 451 379 86.73% | 84.04% 80 50 62.50%
p0987 405 402 359 88.64% | 89.30% 67 39 58.20%
p1023 343 338 303 88.34% | 89.64% 64 44 68.75%

[ Total || 2727 | 2712 | 2393 [ 87.75% | 88.24% || 578 | 386 | 66.78% |

“Al1” is the character accuracy with respect to “Chars” and “A2” is the character accuracy with respect to “Recog-
nized”. "A” is the word accuracy.

can be applied to the postprocessing stage of this system to improve the perfor-
mance.

As we mentioned in Section 1.1, Bansal proposed a Hindi text recognition
system by integrating knowledge sources. After correction, based on dictionary
search, the average accuracy is about 87% at the character level for scanned
document images. This result is comparable with the performance of our system
without any correction. The recognition accuracy of the Hindi OCR system pro-
posed by Chaudhuri and Pal can achieve 91.25% at the word level and 97.18%
at the character level. However, this accuracy was obtained on clean images
with error detection and correction based on dictionary search.

To test the effectiveness of the proposed approach working on clean images,
we processed PDF converted ideal clean images and evaluated them. The accu-
racy is about 95% (with 2584 characters and 2450 correctly recognized for one
page). Figure 17 shows part of one converted clean image and its OCR result.

3.2 Discussion

In examining the data, we found that a number of factors contributed to the
incorrect recognition including:

(1) Incorrect word segmentation. The word segmentation performance is de-
pendent on the quality of document images. Noise may cause the incorrect
under- or over-segmentation of words or merging of words and other sym-
bols. Incorrect word segmentation can further affect the script identification
result, which leads to the degradation of OCR performance.

(2) Incorrect character segmentation. Segmentation is a challenging task, es-
pecially for Hindi scanned images. Due to the appearance of noise, average
width and height of characters may not be obtained accurately. During
segmentation, many decisions such as identifying conjunct/shadow charac-
ters, determining lower modifiers, and determining stroke width, are made
based on these statistics. Incorrect statistics can significantly degrade the
performance of character segmentation, and furthermore degrade the final
performance of recognition.

(3) Missing punctuation such as commas, periods, and parentheses. Often
the space between the words and the punctuation that follows is small.
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T8t T {92, @eA g A9 H 999 § 39 90 7 A
ST @l AIATSST & &9 & RO U B T AU H
fofy foram B farest a6t M=t o T3 ST qeRdt § it
T difsw 9 B dew a9 & forg fae & Smem a1
AT 9 B 8| A6, TE & & g Hifss 699 &
Fey 37 Wi 3 3 onfe & I g1 T S b
T el o ¥ T TR I TN 8| TEIerd, A
S R B i & sea @ e ¥ g s
Y us fqopid dF Wt |1 el

(a)
IR 7 o, Feftew @ ITILH T T § T Al ¥ Ay
AT AT AT F AT & FHIT YT A 7 FIATH HT
Forgoar fora & gt ot Tt et o e & i
TR Fs o 7 w29y aw & e fages & s St
Fafat = @) g Af, Tge ¥ § iy Afw aw &
I QT AT T STATS AT & I I T AT AT
AT et off g T A ST g, A
ST =TT fF I3 % 9= 7 e & qR ayagaeT
7w frefaa S SwTre ama s

(b)

Fig. 17. OCR result of the PDF converted ideal image. (a) Original image; (b) OCR result.

Punctuation can therefore be merged with Hindi words during word seg-
mentation. The direct result is these symbols can negatively influence the
distribution of the features used to perform segmentation. Although we
tried to handle this by detecting these symbols first, there are still some
cases that were not detected correctly.

(4) Character misclassification due to noise. This typically happens with Open
Header and Middle Bar characters. Noise may cause an Open Header char-
acter to become a closed header character, or cause the detected vertical
bar in a Middle Bar character to shift. The classes typically do not over-
lap, so if one character is misclassified, it most likely will not be recognized
correctly.

(5) Character similarity. There exist Hindi characters with similar appear-
ances. Sometimes the scanning noise makes them almost indistinguishable.
During recognition, they may have the same confidence value, which can
then make the final selection of OCR output of this character ambiguous.
Higher level context or language models may help fix this problem.

(6) Special symbols which are noise-like. There are some special symbols (in-
cluding notations) which are visually noise-like, although the position of
these symbols relative to the rest of the text provides strong context. Some-
times these symbols are removed as noise, othertimes noise is left resulting
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in incorrect modifiers. This causes incorrect classification and degrades the
performance of the OCR.

To improve the performance of the OCR, we need to consider all the fac-
tors discussed above and strive to remove their effects. Since a majority of the
incorrect recognition was caused by noise, applying new denoising techniques
such as the approach in Zheng et al. [2003], or making the parameters more
flexible with varying image quality can improve the performance. For the incor-
rect recognition caused by misclassification, more rules, or new classes could
be added to make the classification more accurate.

As a postprocessing step, there are a number of known ways to increase the
accuracy of OCR for free text, and most center around the use of either general
or domain specific lexicons. The recognized terms are looked up in the lexicon
and if they are present, no further analysis is required. If they are not present,
however, we must typically assume there is an OCR error and take steps to try to
select the correct term. Often this is accomplished by using a distance measure
between terms, typically based on character recognition confusion probabilities.

In our application, we are using OCR to process bilingual dictionaries and
these types of documents introduce several inherent problems for OCR correc-
tion. First, we are dealing with a source that by nature has very few instances
of some words, yet is fairly complete in its coverage of the language. In the
case of Hindi, the coverage of the lexicons we have is not complete enough to
warrant the use of statistical correction approaches. Although we have signifi-
cant amounts of electronic text that can be used to generate a lexicon, it is well
known that most naturally occurring text provides only a limited coverage of
the language. In our case we have performed experiments with a limited lexi-
con, but not surprisingly, the overall recognition rates decrease. When a term
is spelled correctly, but does not appear in the lexicon, we actually introduce
more errors by mapping these words to incorrect ones.

The second problem is somewhat of a chicken and egg problem. Since we do
not have ground truth information (and it was not feasible to get in the 30 days
of this effort), it is difficult to estimate the OCR confusion probabilities needed
for intelligent distance measures. We are currently exploring various charac-
ter level correction schemes, but they also rely on a statistical distribution of
character bi- or tri-grams that may not be accurate for dictionaries.

In general, if we are trying to produce OCR systems for low density lan-
guages, large amounts of electronic text may not be available, so we are explor-
ing other ways to semi-interactively identify common confusions.

4. CONCLUSION AND FUTURE WORK

We have presented an adaptive Hindi OCR system which uses a GHIC im-
plemented as part of a rapidly retargetable language tool effort. The system
includes three stages: (i) script identification; (ii) character segmentation; and
(iii) training sample creation and character recognition. Based on the GHIC,
the system is easy to retarget to different Hindi fonts or even a different script,
provided the segmentation can be applied using the same or a similar approach.
The OCR is also designed to handle unknown special characters, and provides

ACM Transactions on Asian Language Information Processing, Vol. 2, No. 3, September 2003.



216 . Huanfeng Ma and David Doermann

a simple interactive interface to allow the user to add them. The OCR (designed
and implemented in one month) was applied to a complete Hindi—English bilin-
gual dictionary and a set of ideal images extracted from Hindi documents in
PDF format. Experimental results show the average recognition accuracy was
87.82%, while for ideal images, the accuracy was 95%, both at the character
level, without any spell checking.

A major thrust of future work will be to perform OCR correction or to resolve
ambiguity among the candidates. One advantage of our approach is that we
give confidence as a side effect of recognition. By setting two thresholds on
the Hausdorff distance, the forward and reverse Hausdorff fractions under the
constraint of these two thresholds can be used to compute the confidence of
a character and word recognition. This confidence is a real value between 0.0
and 1.0, which is much more intuitive and usable than current commercial OCR
software such as ScanSoft Developer’s Kit 2000 from ScanSoft and FineReader
Engine from ABBYY. For these packages, the confidence of each character is a
boolean value, which gives the same weight to all characters when computing
the confidence of a word.

Given the confidence of characters and words, we can further consider the
word correction based on dictionary search. The word correction engine would
determine whether a word needed to be replaced with another correct word
coming from the dictionary, which can significantly improve the recognition
performance at both the character and the word level. Since there is the pos-
sibility that the recognized result may be over-corrected, the word correction
can also provide a probability for the replacement, which makes the correction
easily tuned. Details of this correction can be found in Kolak and Resnik [2002]
and Kolak et al. [2003].

Another advantage of our approach is that we can adapt to different im-
age qualities. For example, if the scanned document image quality is poor, the
Hausdorff thresholds can be set to lower values, which makes the classifier
and recognizer more tolerant to allow more choices. While if the image qual-
ity is high, the thresholds can be set to higher values, which can speed up the
recognition process.

The next step for the recognition phase is to apply new, possibly multiclas-
sifier techniques, and combine them with the current Hausdorff classifier to
provide improved performance. The approach assumes we can train the system
using a small number of samples, so the new classification techniques must
also have this property.

Our OCR system was designed under the assumption that no vast amount of
training samples are available, so it can be easily extended for the recognition of
other languages or scripts under the following two conditions: (i) the language
uses symbols of the same basic class; (ii) the words of this new language can
be segmented into characters. Once glyphs are segmented, the same classifiers
can be trained and used for recognition. Segmentation, however, is very differ-
ent between Hindi and other non-Indic languages. For Chinese, segmentation is
straightforward because character spacing is fixed. For many Latin fonts, kern-
ing must be considered, while language such as Arabic must consider touch-
ing characters during segmentation. Under the two assumption conditions, the
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segmentation can be changed based on the characteristics of the new script,
while the recognition will be adapted through exemplars, if necessary. The user
can create new rules to classify characters, obtain samples from document im-
ages, set output codes for each character, set thresholds for the Hausdorff dis-
tance, and perform recognition. If it is difficult to extract features, which can
be used to classify characters, the operator can put the whole set of characters
into one single class, compute the Hausdorff distance between the segmented
characters and each character in the single class, and then perform recognition.
Although the system was designed specifically to deal with Hindi text, it was
modularized so that we can pull out different components to use for other lan-
guages. Overall, our goal is to build a toolkit of components that can be reused
for rapidly building OCR capabilities for new languages.

Dealing with special characters can also be extended for the recognition of
some symbols in cases that are difficult to segment correctly (such as complex
ligatures). The user can add these parts into the samples and perform recog-
nition. The only thing the user needs to do before performing recognition is to
make sure the encoding of these special characters is correct.

Finally, a key to making our system generally adaptive is to consider how to
allow system parameters to dynamically adjust for changes in image quality.
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