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ABSTRACT 
An agent population can be evolved in a complex environment to 
perform various tasks and optimize its job performance using 
Learning Classifier System (LCS) technology.  Due to the 
complexity and knowledge content of some real-world systems, 
having the ability to use genetic programming, GP, to represent 
the LCS rules provides a great benefit.  Methods have been 
created to extend LCS theory into operation across the power-set 
of GP-enabled rule content.  This system uses a full bucket-
brigade system for GP-LCS learning.  Using GP in the LCS 
system allows the functions and terminals of the actual problem 
environment to be used internally directly in the rule set, enabling 
more direct interpretation of the operation of the LCS system.  
The system was designed and built, and underwent independent 
testing at an advanced technology research laboratory.  This paper 
describes the top-level operation of the system, and includes some 
of the results of the testing effort, and performance figures.   

Categories and Subject Descriptors 
I.2.4 [Artificial Intelligence]:  Knowledge Representation 
Formalisms and Methods – representations 

I.2.6 [Artificial Intelligence]:  Learning 
I.2.11 [Artificial Intelligence]:  Distributed Artificial Intelligence 
– intelligent agents 

General Terms 
Algorithms, Design, Experimentation, and Theory. 

Keywords 
Genetic Programming, Learning Classifier System, intelligent 
agent, bucket brigade, reinforcement learning, evolutionary 
computation, genetics-based machine learning (GBML), 
autonomous agent, agent learning, complex adaptive system. 

 

1.  INTRODUCTION 
The use of Genetic Programming (GP) in a Learning Classifier 
System (LCS) allows flexibility and automatic tailoring of the 
rule set to operate in a given environment by using the function 
calls available in that environment.  There are added complexities 
involved in implementing some of the LCS theory in a GP-
oriented system.  These include the bidding, specificity, bucket 
brigade, and rule structure, for instance.  A technique to 
accomplish the crowding algorithm in GP is also described here, 
which is also useful for GP processing outside of an LCS system.  
A general description will be supplied, and detailed to describe 
the elements of the technology. 

Other LCS systems were researched before deciding on using GP 
in a full bucket-brigade implementation.  These include LCS with 
GP as described in [1], as well as the classifier system works of 
[2], [3], [4], [5], [6], [7], [8]   and many others.  The GP-LCS 
system was constructed using a mobile agent-based architecture, 
to better enable it to operate in a Complex Adaptive System 
(CAS) type of environment [9]. This system was a multiyear 
development, and completed the initial phase of implementation 
and development by the year 2001.  This system provides one 
more facet of LCS implementation techniques with GP rules.  

It was originally designed as an intelligent agent learning and 
performance system to support worldwide maintenance of the 
Joint Strike Fighter (JSF) aircraft, then in design by the Lockheed 
Martin Corp.  The constructed system was tested by the General 
Electric Global Research team, and by Lockheed Martin, for 
performance on sets of abbreviated jobs.  These tasks included 
inventory purchase, adaptation to environmental changes, mobile 
agent functionality, and tasks exhibiting non-Markovian learning.  
This testing is described in the Results section.  It has been shown 
to perform learning, in a non-Markovian sense, to optimize its 
results with respect to fitness and exogenous reinforcement, and 
to respond to changes in the environment, while creating rule 
chains for execution of problems in a multi-computer agent-based 
architecture.  If new information becomes available, the system 
incorporates this information.  If a performance dip occurs, the 
system will try other avenues of system operation to attempt to 
increase performance. 

2.  STRUCTURE OF THE SYSTEM 
The operation of “rule-firing based upon message matching”, and 
performance of the “bucket-brigade” method [10] of rule-chain 
learning, has proven to be a difficult conceptual task to re-create 
with genetic programming, because the genetic programs are of 
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varied shapes, and may individually consist of a single rooted 
program tree [11], and the implementation of messaging requires 
changes to adapt to the GP paradigm.  The rule has thus been 
structured to implement this concept, with the system creating a 
segmented, multi-part rule.  Just like the ternary LCS, the GP-
LCS rule has an ‘if’, or antecedent, part and a ‘then’, or 
consequent, part.  Messages are implemented using matching 
techniques, such as fuzzy message matching for numerical 
messages.  At least one message must be won in order for the rule 
to be able to fire.  The GP-LCS rules can require multiple 
message matches to fire, and may post multiple messages.   

The specificity characterization of the binary LCS is also 
provided by the GP-LCS through structural and mechanical 
specificity.  This is discussed in the section on the Fully 
Expanded Hyperdimensional Notation (FEHN) concept. 

The overall learning system is shown in Figure 1, where the 
learning system is embedded in an intelligent agent infrastructure.  
There are environmental interfaces that allow the agent to 
encounter the external CAS, and exchange messages with the 
external message lists.  Exogenous rewards from the environment 
enter through the environmental interfaces, and are provided to 
the individual rule that posted the messages on the external 
message lists that resulted in the reward.  There is an internal 
message list also, and when rules are created, they are forced to 
reference at least one of the internal or the external message lists 
in order to fire, and the rules are also forced to post at least one 
message on either the internal and or the external message list.  

The rules are contained in the Population, and are processed using 
a Michigan-approach system, but involving Genetic Programming 
(GP) instead of Genetic Algorithms (GA).  A full bucket-brigade 
fitness passing mechanism is used.  The rules have associated 
wallets, as represented by the $ sign next to each rule in the 
population.  Tags are also used, to provide the ability to develop 
multiple task knowledge programs within a single population.  A 
generation gap is used to control the amount of the population to 
be replaced.  

The population contains a Crib, where newly constructed rules 
(individuals, children) are placed before incorporating them into 
the population, after being clone checked to prevent duplicate 
rules from entering the population.  Crowding is performed to 
help maintain diversity.  Children are compared to a set of the 
most similar adults, and the least fit adult is replaced with the new 
child.  Migrants and mutants are handled in a similar fashion. 

Implementing the crowding algorithm with a set of rules that are 
created using genetic programming requires new techniques to 
judge the similarity of one rule to another.  In this regard, the 
rules were considered to exist in a hyperspace of all possible 
rules, with given rule gene graphs viewed as hypersurfaces within 
the constrained hyperspace of all possible rules.  Important alleles 
were given more influence in the crowding comparison. 

Rules that immigrated from other demes are stored in the 
Immigration Depot until they can be integrated into the 
population.  This allows agents to learn and pass their intelligence 
on to other agents also tasked with certain problems.    

There is a Resource Reservoir that contains the internal fitness 
function that provides endogenous rewards for the agent in the 
learning of its job.  One fitness function exists for each job to be 

learned.  The Resource Reservoir also contains the raw genetic 
material consisting of functions and terminals that may be 
combined into chromosomes, in definition.  A function can accept 
other functions or terminals as arguments, but a terminal takes no 
arguments.  The system uses strong typing, so that only certain 
functions or terminals may be used as input to a given function.  
The genetic material is composed of information pertinent to the 
environment, and new information can be sent to the Resource 
Reservoir for future incorporation into new rules.  New 
information is also integrated through covering operations, where 
rules are created to match information on the message boards if 
the message has not yet been matched with the given rule set. 

 

 
Figure 1. GP-LCS intelligent agent learning system. 

Money is used for many purposes in the system.  It is used to buy 
information from the message boards, it is increased when 
payments are received from other individuals for messages they 
purchased, it serves as a measure of the relative usefulness of this 
individual to the society, and it is increased or decreased when 
rewards or punishments are received during the process of 
learning a job.  The system also maintains a bank account, shown 
in Figure 1, as an overall measure of the agent’s strength. 

A Bank Account is allotted to the agent as a whole, to help 
determine best agents to mate in a pseudo-Pittsburgh-type of 
manner, in an overall multi-agent society.  The system uses 
differential-fitness to let the learning system detect improvements 
and declines in fitness over a given run at accomplishing a job.  
Differential-fitness starts at $0.00 at the beginning of a job, and is 
adjusted by adding all the endogenous and exogenous fitness and 
rewards, and subtracting the payments and taxes, that accrue 
during the running of a given job.  Differential fitness thus serves 
as a way to grade the agent with respect to job performance, and 
without dependence on the total amount of cash that the agent 
has.   

2730



The execution engine controls the operation of the entire agent 
learning system, and controls when and how the genetic system 
operates on the rule set.  The genetic rule-discovery and evolution 
subsystem operates on the population after a number of epochs of 
rule set testing.  It selects rules for mating using a form of 
roulette-wheel selection for the parents, although the diversity is 
influenced through sigma-truncation [12].  The oscillating sigma-
truncation algorithm used here allows the choice of parents to 
come from mainly the more fit individuals or from a broader set 
of the population, by adjusting derived fitness values of the 
individuals based upon the standard deviation of fitness values in 
the mating set.   

2.1 Population 
A GP-LCS agent contains a population of rules.  These rules 
operate through fitness sharing to create a set of rules that 
cooperate to accomplish a task.  The environment supplies 
rewards or punishments for various agent actions, and these 
payments or deductions get sent directly to the particular rule in 
the particular agent that submitted the message to the external 
message list, or that performed an operation.   

2.2  The Rule Structure 
There are four gene graphs in the rule, as shown in Figure 2, 
comprising the internal and external antecedents and consequents.  
The system grows the antecedent and consequent gene graphs 
from different sets of genetic material and potential messages that 
operate in the appropriate internal or external environment.   

There must be at least one internal or external message in both the 
antecedent and the consequent.  These messages are chosen from 
the most aged genetic material in the resource reservoir to help 
clear messages from the message lists and to encompass the 
genetic material related to the problem space.   

To save processing power, and to make sure that the whole 
antecedent is considered as one, the internal antecedent (IA) is 
checked first to see if it will be able to execute at all.  The IA is 
tested to determine: if it is executed, will it return a Boolean 
TRUE as a result.  It is tested as if it had obtained all available 
messages that it matched, even though it has not yet bid on them.   

If the IA can return a valid Boolean TRUE, then the external 
antecedent (EA) is tested to see if any of its messages match 
something on the external message board.  If either the IA or EA 
fails the test, then the rule is not executed, saving bids that might 
have been placed in vain.  This rule will lose money on each 
epoch of LCS through a life tax mechanism.  A rule possessing an 
IA and EA that both pass the tests is considered a runnable rule. 

The next step is to bid on all internal messages that are matched 
on the internal message list by the IAs of all the runnable rules.  A 
bid tax is paid for every bid placed.  Each bid includes a small 
amount of zero-mean Gaussian noise to help break ties during the 
auction.   

After the bids are placed for all the rules, the internal auction 
house closes the auction.  The auction compares all the bids, if 
two or more rules bid on the same messages, then the rule that had 
submitted the highest bid wins the message.  The winning rules 
are notified, and they pay their bids to the internal clearinghouse.  
The clearinghouse subsequently distributes the payment to the 

rule that had posted the winning messages.   The IAs are then run, 
to obtain the results, yielding Boolean TRUE or FALSE 
indications for the IA section of each runnable rule.   

The EA messages are bid on for all the runnable rules that have a 
passing IA, also paying a bid tax for each bid.  When the EA 
message auctions close, the rules are notified as to their success, 
and they pay for their winning messages.  Then the EA is run, 
using the results of the auction.  This is the final gate.  If a rule 
makes it through the running of the EA, then it will then execute 
its consequent.   

Both the internal and the external consequents now execute, as 
indicated in Figure 3.  If during their execution, they encounter 
any messages in their chromosome, then these messages are 
posted on the appropriate message board.  As the agent executes 
the eligible rules, the reinforcement controller is continually 
looking for reasons to reward or punish the agent.  If, during the 
execution of a rule, a reward given to the agent, then the reward is 
tagged with the identification of the rule that was executing.  This 
rule will be given the reward during the rewards state.   

The rewards state occurs after all rules have executed.  This is 
when distribution of all reinforcement rewards and punishments, 
and auction payoffs occurs.  Each rule that has a monetary 
adjustment coming gets the adjustment made to its wallet.  Life 
taxes are also taken at this time.  The life tax is a certain 
percentage of the amount of money a rule has in its wallet.   

Each rule gets taxed just for existing.  This tax is called lifeTax, 
or TL(t), and has a tax rate, KL, with respect to the strength of the 
rule, as follows 

( ) ( , )L LT t K U x t= ⋅                                (1) 
where U(x,t) is the fitness of rule x at the start of epoch t.   

The lifeTax rate is set based upon the free-fall half life of the 
rule’s strength, given decreases only attributable to life taxation.   

From Richards, 1998 [13], the lifeTax will be set to: 

( )
1

11 2
GPT

LK = −
 

where 

TGP = number of LCS epochs between rule-discovery using the 
genetic programming system. 

Rules that continually are taxed, but never receive any money will 
eventually get replaced during genetics processing.  After the 
rewards have been distributed, the LCS epoch is complete.  The 
age of the rules are all increased by one.  When the agent has 
processed the entire LCS epoch, if more epochs are specified for 
the current job, the agent will start at the first step of the LCS 
epoch processing again.  

If there were messages on the message boards that were not 
purchased, the system puts these messages into the respective 
message depots.  As the agent learns, it first pulls any available 
genetic material from the message depots to create its new rules 
before creating any random data.  Thus, it learns to respond to 
novel situations occurring in the environment and to link up rules 
through messages to form a chain.  If there were no runnable 
rules, then a special cover message operation will be performed 
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where a new rule will be created immediately to allow the system 
to recognize the current environment.   

 
Figure 2. The rule structure enforces the 

antecedent/consequent structure. 

 

 
Figure 3. Execution of a GP-LCS rule begins with the 

antecedents. 

2.3 Message List 
The message list, shown in Figure 4, is the primary internal and 
external communications unit for the agent system.  The message 
list comprises a dynamic group of messages, each of which has a 

Message Allele.  These messages are placed onto the list by an 
agent or rule, and remain on the list until they are purchased, or 
for a certain duration, otherwise. 

The message contains the identification of the Originator Agent 
and Rule, so that the agent that put the message on the rule list 
can get paid when the message is purchased.  The Rule ID is also 
supplied so that the correct rule of the originating agent can 
receive the payment.  The message includes a Born-On Date for 
use in age determination and operation with algorithms to process 
old un-bought messages. 

The message list contains an Auctioneer that controls all 
purchases of messages from a message list.  As rules bid on the 
message, the Auctioneer accumulates bids for each message.  The 
auction is a sealed-bid English auction, where the highest bidder 
wins, and no competitor sees the bid of any other competitor.  
When the auction closes, the Auctioneer informs the winning rule 
of the winning agent that it won the message.  The message list 
Clearinghouse collects the money from the winning rule, and 
sends it to the agent rule that originally put the message on the 
message list. 

2.4 Message Allele 
Similar to genes, each message contains an allele that takes on 
some number of values [14].  The Message Allele expresses the 
substance of the message, which is composed of the Contents and 
the Message ID.  The Message ID is in the form of a number and 
identifies the contents of the message.  The contents of the 
message are in the form of a String type.  These could include 
“Find Part A009976-A11” or “Sell 1000 Shares of XYZ”. 

Message alleles are implemented using fuzzy logic techniques.  
They have a center numerical value and a range band of 
acceptable values.   

 

 
 

Figure 4. Messages are placed on message list by a rule. 
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The message primitive that is present in a rule can be called the 
message detector, because it is used to detect if a matching 
message is available on the associated message board, internal or 
external.  The internal message list uses primarily numerical 
messages, and the message detectors can examine a number 
range.  If the message number on the list falls within the range of 
the message detector on the rule, then the rule matches the 
message and will bid on it.  The closer the message is to the 
middle of the of the message detector range the more that the 
rules will bid on the message.  The external message list uses 
textual messages, where either a direct match or a theoretical 
proximity to the message is used for matching the message. 

2.5 Resource Reservoir 
The agent maintains a resource reservoir which holds essential 
data items and may be dynamic to some extent.  The fitness 
function(s) provide the agent with a reference as to how well it is 
performing the various jobs that it is either learning or executing.  
The fitness function is used to help decide between different 
courses of action, because actions will be selected that yield a 
higher amount of fitness, expressed as monetary rewards given to 
individual rules when they have succeeded in accomplishing 
milestones that are monitored by the fitness function.  Each job 
has its own fitness function. 

The resource reservoir also contains raw genetic material for use 
in constructing new individuals.  The raw genetic material 
consists of functions and terminals that may be combined into 
chromosomes.  This system uses strong typing, so that only 
certain functions or terminals may be used as input to a given 
function.  The automatic program generator initially makes 
random chromosomes.  New raw genetic material may take the 
form of new terminals, such as “Generator 8” or “Inventory Site 
B”.  Other raw genetic material may take the form of functions, 
such as “SetGoal( string )”,  “increaseSpeed(Generator)”, or 
“Dispatch( site )”.As the system becomes aware of new functions 
and terminals, they become added to the resource reservoir for use 
in automatically creating and testing new programs.    The 
function “SetGoal( string )” accepts a string as an input argument, 
and returns a certain data-type answer, such as a Boolean 
(true/false) value, when complete.  The “Dispatch( site )” function 
accepts a site argument, which can be a terminal of type site, or a 
function that returns a site, and when the agent has dispatched to 
the site, it may return a Boolean TRUE or FALSE to indicate the 
success or completion of the operation. 

2.6 Tags 
Tags are used to help to identify the agent as being suited for 
particular tasks.  The offense tags indicate what the agent is good 
at; the defense tags serve to protect the rule by indicating what 
strengths it has in certain areas, such as with respect to a certain 
job; and the mating tags segregate the agents when selective 
mating is performed.  Tags are updated as the agent learns 
different jobs. 

2.7  Environmental Interfaces 
In the field of intelligent agents, and especially in the field of 
genetic algorithms, anthropomorphic terminology is used 
frequently, such that the agents and their components are 
described in terms of human or animal characteristics.  For 

descriptive purposes, the intelligent agent is split into a body and 
a mind, as seen in Figure 1 [15].  The mind is the essential 
intelligence that allows the agent to learn, retain information, and 
determine actions.  The body is the container for the mind, and 
provides the capability to execute commands that the mind has 
issued, and to provide information from the outside world into the 
mind. 

The outside-world information is obtained through the 
environmental interfaces, consisting of components such as 
external message board links, mobility controls and reward 
acceptors.  During high-speed training, the mind will leave the 
agent body, and will be linked with a different body in the 
simulator.  The simulator body supplies the mind with the same 
inputs and outputs as the real-world body, but executes in the 
simulator, for increased speed and repetitive training.  Using 
interface methods, the mind is connected to the correct body for 
either simulated or actual system usage. 

2.8 Execution Engine 
The agent executes its rules using a state-machine type of method, 
where the agent performs certain manipulations on the population 
in a given order.  Many of these operations could be performed in 
parallel, but serial execution was used initially in this system.  At 
the top-level view of the algorithm the agent views the 
environment, and looks at what it is currently doing, then takes 
any actions that it believes are appropriate, and makes changes to 
the environment and its internal state.  All the while, the agent is 
expending energy in the form of fitness money, which will 
hopefully be balanced by the rewards it receives for doing the 
correct things at the correct times. 

There are two modes of operation, that of learning, and that of 
executing the rule set.  During the execution phase the agent is 
generally operating in the actual environment, with learning 
potentially disabled.  During learning, the agent is generally 
operating in the simulator and performs frequent genetic 
processing and LCS strength updates.  These phases can overlap. 

3.  BUCKET BRIGADE OPERATION 
Through the passing of money through the system, the system is 
capable of rewarding rules that help achieve a good, profitable 
solution.  Through multiple iterations, rules that receive payoffs 
from the environment wind up passing the money further up the 
chain, because they can bid more money on messages.  The 
messages thus wind up forming a chain of rule executions that get 
reinforced due to their proper behavior.  The amount that a rule 
bids on a message is directly proportional to the amount of money 
that a rule has.  It is also proportional to how closely the message 
on the list is matched by the message in the rule.   

Message alleles, representing a genetic primitive, are enforced to 
be used as part of the antecedent and the consequent program 
trees.  When a rule fires, it places its messages on the message 
board.  Then, when the rules are checking the message board for a 
message that matches the message allele in their antecedents, they 
use a fuzzy matching range to determine if the center value of the 
message on the message board is contained within their range.  If 
so, then the message allele matches the message on the message 
board to a certain degree, and may bid on it. 
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Similar to the binary LCS, if no rule matches the messages on the 
message board, new rules are created at random, but provided 
with an antecedent message-allele that will match with a message 
on the message list; this is termed ‘cover-detection’.  The creation 
of messages is also supported, if all the messages have run out on 
the message list.  With the use of the GP messages, more efficient 
information can be transported around the system.  The meaning 
of messages expressed in the textual messages on the external 
message board can reduce message uncertainty entropy through 
the increased expressiveness and standardized agreements based 
upon the use of an ontological namespace, referencing an 
ontological definition or task ontology. 

 Jobs to be performed can be given to the GP-LCS as part of an 
external message, and the GP-LCS learns to recognize the 
message, and to perform tasks to satisfy requirements of the job. 

4.  FULLY EXPANDED 
HYPERDIMENSIONAL NOTATION 
To obtain similar capabilities with a GP-LCS as with a Genetic 
Algorithm-based LCS it became necessary to be able to analyze 
the GP rules to provide data for algorithms such as bidding, 
specificity, and crowding.  Due to the free-form rules that are 
obtainable with GP, a technique using a Fully-Expanded 
Hyperdimensional Notation array (FEHN array) was used.   

The schema representations of Poli and Langdon [16] and 
Justinian Rosca [17] use variable size schematas to hold the 
program information.  This causes a “competition of hyperspaces” 
as the structure of the program changes to adapt to the problem.  
To allow an efficient and direct computer implementation of the 
representation of program schemas, the concept presented here 
uses a fully-expanded hyperspace representation.  Hyperspace 
representations can change, hyperplanar schemas can evolve, all 
without changing the base representation of the individuals. 

Consider the gene graph of Figure 5.  It shows a complete 
hyperdimensional expansion of all nodes and links possible for a 
genetic program that is made up of functions having a maximum 
fan-in of 2, and it has a maximum graph depth of 4.  The 
maximums are used, although not all nodes have this maximum 
fan in, nor do all graphs have the max depth.  The structure of the 
gene graph of Figure 5 allows the node names to be organized 
into the structure of Table 1, where the contents represent 
functions or terminals.  Thus, all gene graphs complying with the 
fan in and depth specifications can be represented and compared 
in one common foundation. 
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Figure 5. Fully-dimensioned gene graph. 

Table 1. FEHN array representation of fully-expanded gene 
graph for fan-in of 2 and depth 4. 

Gene 
number 

1 2 3 4 5 6 7 8 9 1
0 

1
1

1
2

1
3

1
4

1
5

Contents a b c d e f g h i j k l m n o

4.1 Crowding 
The comparison distance between two gene graphs is used in the 
calculation of the crowding distance.  New children are integrated 
into the population such that they replace adults of a similar 
crowd, where the adult to be replaced is the one with the lowest 
fitness in the group.   

A measure of closeness is required.  In a manner very similar to 
that used by Holland [18] for tag comparison in Echo CAS agents, 
and also in Holland [10] for schema processing, the genetically 
created programs are compared to each other and a measure of 
closeness is calculated.   

The FEHN array structure allows all comparisons to be performed 
with a linear array.  The match score between two gene graphs is 
the sum of the match scores of each of the positions in their 
associated FEHN array.   These match scores may be as shown in 
Table 2. 

Table 2. FEHN array comparison values. 

COMPARISON MATCH SCORE 

exact match of two, non-empty items 
at the same location in the FEHN array +2 

mismatch of two, non- empty items at 
the same location in the FEHN array -2 

mismatch between one non- empty 
item and one empty item at the same 
location in the FEHN array 

-1 

if both items are empty at the same 
location in the FEHN array 0 

 

Thus, having a means to compare two gene graphs, a crowding 
technique may be implemented.  A set of random individuals may 
be compared to a new child for similitude, replacing the most 
similar.  Or the entire set of adult individuals may be FEHN 
checked, to determine the similarity of each to the new child.  
Then, the least fit of the most similar individuals may then be 
chosen for replacement. 

4.2  Specificity 
The GP-LCS rule structural specificity is determined from the 
number of nodes of the antecedent gene-graph containing 
information, not including the primitives {and, or, not, progn}, 
which do not lend much to the determination of how specific a 
gene graph is.  The number of information nodes is divided by the 
maximum number of nodes possible.  A higher the ratio indicates 
a higher specificity.  Also, the mechanical specificity is 
determined by the width of the fuzzy-message detection range.  
The smaller the range, then the higher the specificity. 

2734



4.3  Bidding 
The total bid provided by rule n at epoch t, Bidn(t), is based on 

{ }( ) ( , )

where

= bid ratio constant, for example 0.1 portion of money

 base level of bid, constant

 specificity based portion of bid, constant

 specificity of rule, based on ru

n R B S R

R

B

S

R

Bid t K K K S U x t

K

K

K

S

= ⋅ + ⋅ ⋅

=

=

= le analysis

( , )= strength of rule  at the start of epoch U x t x t  

5. RESULTS 
The parameters used in the testing by the General Electric Global 
Research laboratory included: agentQuantity, classifierQuantity, 
initialRuleFitness, controls for the SigmaTruncationOscillation, 
migrantProportion, agentBirthRate, bidTaxLevel, specificityLevel 
(Ks), dontCareRatio, pMutation, generationGap, ADF0-4 max 
depths and create methods, crowdingFraction, and 
crowdingAlgorithm selection.  The dontCareRatio works with the 
fuzzy rule matching, where 0 means an exact match, and 1 means 
that virtually any rule can match the message(s).  Emphasis in this 
testing was based on characterizing the bucket-brigade market-
based learning aspects. 

The test cases included ordered traversal of different remote 
computer sites, as a path planning exercise, including cases where 
the agent was expected to visit a certain site more than once to 
test non-Markovian performance.  An inventory scenario was also 
tested, involving agent purchase of parts.  This scenario was 
expanded in subsequent testing to include multiple parts stores, 
and changing costs and availability, forcing on-line adaptation, 
and this was successfully demonstrated.   

An example of the results for the testing of the specificity value, 
Ks , from Equation 3, is shown in Table 3.  Along with the testing 
results of the other jobs, this shows that lower specificity resulted 
in improved learning performance; further testing will help 
generate a better curve for Ks .  The Time value is in milliseconds.  
Cycles are epochs of rule list processing, and generation is the 
number of generations of evolution processing needed to correctly 
learn the job.  Further training enforces parsimony, and increases 
the job performance.  In many cases, as shown by the standard 
deviations, the learning performance can be greatly improved, or 
diminished, depending on the other parameters.  For instance, 
with 8 agents (8 separate rule sets evolving and sharing migrants), 
with 100 classifiers each, it took only 8 seconds, 2 generations 
and 8 epochs, but this was probably based on a lucky first 
creation of the rule trees.  It had generationGap = 0.24, max depth 
of rules of 2 or 3 which perhaps could have been deeper for better 
results but that helped enforce rule chaining, bid tax level 0.0004, 
crowding fraction 0.2, initial rule fitness/cash 50000, pMutation 
0.4 which was sort of high, and specificity level 0.7, which is not 
what the overall results show as the best specificity, but it worked 
well in this case.  

 

 

Table 3.  Testing of GP-LCS on a non-Markovian problem. 

 Ks = 0.6 Ks = 0.7

Number of Successful Runs 26 138

Number of Runs 26 145

Average of "Time"    5,457,331.38    6,478,668.91 

StdDev of "Time"    3,897,044.68   5,449,800.56 

Average of cycle Counter             712.69            916.04 

StdDev of cycle Counter             659.37            920.83 

Average of generation             177.96            224.51 

StdDev of generation             164.86            216.42 

 

Another test, to determine the appropriate number of classifiers to 
use for these sample problems is given in Table 1.   This shows 
that the number of classifiers is relatively important in the speed 
of learning, although, it will learn satisfactorily without having an 
optimum number of classifiers.  Having too many or too few 
classifiers is seen to impair learning performance.  The learning 
was cut off after a certain number of generations, resulting in 
unsuccessful learning in some cases.  If a more compact rule set is 
desired, then it will take more learning, if the particular job 
spectrum requires more classifiers for an optimum learning speed. 

Table 4.   Testing the effect of different number of classifiers. 

Number of Classifiers 25  50  75 100 

Total Number of 
Successful Runs 45 161 33 153 

Total Number of Runs 45 176 33 165 

Total Average of 
"Time" 

   
6.03e6  

  
7.52e6  

 
44.84e 

  
5.62e6 

Total StdDev of "Time" 
   

3.84e6  
  

7.18e6 
 

3.79e6 
  

5.20e6 

Total Average of cycle 
Counter 

   
1,274.  

  
1,301.  

 
898.06 

  
937.60 

Total StdDev of cycle 
Counter 

   
865.10  

  
1,414.  

 
809.69 

  
1,138.3 

Total Average of 
generation 

   
284.04  

  
288.81  

 
204.42 

  
210.80 

Total StdDev of 
generation 

   
185.85  

  
320.58  

 
180.72 

  
289.79 

 

Other results show that having more agents results in faster 
learning, but this can be offset in processing time, if a single agent 
learning site is used.  Increasing the dontCare ratio to provide 
more generalization also speeds the learning process, similarly to 
increased performance resulting from less specificity. 
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6.  SUMMARY 
In this paper, we described a Genetically Programmed Learning 
Classifier System for Complex Adaptive System Processing.  We 
provided a method for GP “bucket-brigade” rule-chain learning 
by a type of fuzzy message matching and by implementing a 
specificity technique for GP-LCS.  This specificity technique is 
characterized by the FEHN array technique which provides a GP 
gene graph comparison technique useful in the implementation of 
a crowding algorithm. 

An LCS has many parameters, for administration, the market 
system, the chromosomes, and the genetics.  In a large, complex 
system, testing of the effects of these parameters can greatly 
improve the learning and operating performance of the system.  
There is a careful balance of parameters required for optimal 
learning, and it leads to the concept of meta-LCS control for 
optimizing the learning parameters with respect to a given 
problem domain. 

This GP-LCS implementation has been proven to work, and tests 
for scalability should be performed.  It creates rules in an 
environment, and these rules consist of sets of programs 
automatically written in a high-level language of functions and 
terminals.  It provides the ability to realize a large-scale Complex 
Adaptive System in a multi-computer environment.  We believe 
that an expanded system, with attendant simulation systems for its 
training, and an infrastructure that interacts through the external 
message list could provide autonomic learning, processing and 
optimization for many enterprise-level tasks, much in keeping 
with John Holland’s Echo and Complex Adaptive System 
environments. 
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