
The Effects of Initial Population in Genetic Search
for Time Constrained Traveling Salesman Problems

Cheng-Hong Yang Kendall IL Npgard

Department of Electronic Engineering Department of Computer Science and Operations Research

National Kaohsiung Institute of Technology

Kaohsiang, Taiwan 80’782

26stract: WC dcscri6c the application of ljcnctic AC-
gorithms to the travding salesman pro6Cem with time
windows. A new type of crossover operator, called
edge-type crossoucr, with a heuristically sclcctcd initiaf
population, is used in the genetic search. When com-
pared with alternative methods from the literature,
experiments indicaq that the heuristic initialization.
speeds the Bcnctic search process.

1. Introduction

Genetic Algorithms (GAS) are stochastic search al-
gorithms that were pioneered by Holland [Ill. A GA
utilizes an artificial chromosome that represents a
solution to the problem of interest, and attempts to
successively find better solutions using Darwinian
principles of survival of the fittest genes. It has been
demonstrated, theoretically and empirically, that GAS
are robust and effective in a variety of problems.

GAS use probabilistic transition rules to guide their
search. A genetic search is conducted in multiple
dimensions by recombining structures and then eval-
uating the new structures. GAS enable high fitness
population members structures to be combined with
a structured yet randomized information exchange.
New test structures are introduced in every genera-
tion, bringing together the fittest pieces of the old
with an occasional new part. Although they are ran-
domized, Genetic Algorithms do not follow a simple
random walk. They make good use of historical in-
formation to discover new search points in order to
improve performance [7].

There are many search algorithms that can be used
to heuristically find a high performance solution, but
if the solution space is large, it is important to use
an efficient algorithm. Most of the published methods
for solving the time window constrained traveling
salesman problem are based on mathematical pro-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

01993 ACM O-89791-558-5/93/0200/0378 $1.50

North Dakota State University

Frago, North Dakota 68106

gramming models. In this research, our attempts to
solve TSPTW’s with GAS led to a new type of
crossover operator that consistently provides high
performance solutions.

2. Traveling Salesman Problems with
Time Windows

The traveling salesman problem (TSP) is a proto-
typical combinational optimization problem. In the
TSP. a salesman must make a complete tour of a
given complete graph with N nodes (cities) and find
the shortest Hamiltonian circuit through all nodes of
the graph. The Hamiltonian circuit must pass through
each of the nodes in the graph exactly once.

The traveling salesman problem with time windows
(TSPTW) is an extension of the TSP. In the TSPTW,
a salesman starts at a specific node (the depot) and
must visit each node exactly once and return to the
depot. The visit to each node must occur within a
time window. For example, if ESTi and LSTi repre-
sent the earIiest service and latest service times of a
specified time window for node i, then the salesman
must visit node i between times ESTi and L.Sl-+ When
a salesman arrives at a node before the earliest ser-
vice time, the salesman must wait for that time
window to open. Some nodes may have no time
windows. The objective of the TSPTW is to find the
routing order that minimizes total route distance and
visits each node during its associated time window.

Christofides, Mingozzi, and Toth [3] developed a
branch and bound algorithm to solve the TSPTW us-
ing a dynamic programming state space relaxation
procedure to compute bounding information. A branch
and bound algorithm for the TSPTW presented by
Baker [l] exploits the structure of the dual of a re-
laxation of the proposed problem, producing lower
bounds by solving a longest path problem on an
acyclic network. In that study, test problems involving
from 8 to 50 customers were produced by adding
time windows to some of the nodes in the standard
TSP test problems of Eilon et of. [5]. Baker and
Schaffer [2] produced a heuristic solver for the mul-
tiple vehicle routing and scheduling problem with
time window constraints effectively by using branch
exchange techniques, such as the well-known 2-opt
and 3.opt procedures [2]. This procedure can also
solve the TSPTW. Nygard and Yang [12] developed

378

a new crossover operator, called the earliest closing
time crossover operator, to solve the TSPTW using
Genetic Algorithms (GA). That method consistently
provides high performance solutions. In this paper,
we solve the same test problems, but using a more
effective method.

The TSP is simply stated, but its simplicity is de-
ceptive. It is an NP-complete problem. The incorpo-
ration of time window constraints significantly in-
creases the complexity of the TSP. The TSPTW is
NP-hard [111. Like all NP-hard problems, the time
required for any known algorithm to compute an ex-
act solution of the TSP increases exponentially with
the number of nodes.

3. Experimental Procedures

To apply a GA, candidate solutions to the problem
within the space to be searched must be mapped onto
an appropriate representation for the artificial chro-
mosome. An adjacency representation was used in
this search. In this representation, there is an edge in
the tour from node i to node j iff the allele in po-
sition i is j [9].

The three components of a basic GA are selection
of population members for reproduction, recombina-
tion into new members, and evaluation of the fitness
of members. The selection function is an evolutionary
function that eliminates trials solutions that are rela-
tively ineffective. The quality of the overall result
and the computational effort required to achieve
convergence critically depend on the selection crite-
ria. Recombination usually involves genetic operators
called crossover and mutation. Crossover is the pri-
mary genetic recombination operator that was in-
spired by knowledge of natural genetics. Under the
crossover operator, two population members produce
offspring by exchanging portions of their artificial
chromosomes. The crossover operator we devised,
called the edge-type crossover, is discussed in detail
in section 3.3. Mutation is used to introduce variety
into the population. In mutation, bits in the artificial
chromosome are randomly switched with a (typically
small) probability. It is a heuristic for avoiding being
trapped in a single point of local minimality. In
general, we can’t hope to search the space globally.
Since GAS are direct search algorithms, a perfor-
mance evaluation function is used to evaluate each
point in the search space. The performance evaluation
function used in our application is the sum of the
total route distance and the the number of tardy
nodes multiplied by the average distance between
depot and node. In section 3.2, we discuss this func-
tion in detail. In our experiments, the algorithm was
terminated by reaching a prespecified number of tri-
als.

3.1 Initiaiization of the Population

The initial population usually consists of randomly
generated tours. In this case, the initial population of
a tour for the TSPTW is generated by randomly se-

lecting the next visit for each node from a given list
of nodes that have not yet been visited until all
nodes have been visited, then returning to the node
of first departure. As an alternative to the randomly
generated initial population, it is likely to be advan-
tageous to begin the GAS with a population of high
performance candidate solutions. The heuristically se-
lected initial population of the tour used in this study
is generated under restrictions discussed below.

We use the term “time-constrained node” to de-
scribe nodes with time windows. Non-time-constrained
nodes have no constraints on when they can be vis-
ited. Assuming that time windows do not overlap, a
feasible TSPTW solution can be viewed as a route
constructed from the nodes with the time-constrained
nodes sorted by latest service time. Since the time-
constrained nodes are sorted by latest service time,
there is only one order in which they may be visit-
ed. The non-time-constrained nodes are then placed in
the route either between time-constrained nodes or at
the end of the route. The number of routes depends
on the possible combinations of the non-time-con-
strained nodes.

The initial population of the tour is constructed as
follows: first, the nodes are separated into two
groups, time-constrained and non-time-constrained.
The first group contains the time-constrained nodes
sorted by latest service time and forms a partial
tour. The second group contains the non-time-con-
strained nodes. These nodes must be inserted between
the nodes of the first group or added to the end of
the first group to form a complete route.

Associated with each pair of nodes in the first
group is a bucket. The number of buckets is equal to
the number of time-constrained nodes. Each bucket
contains those non-time-constrained nodes in the
second group that can be visited between the associ-
ated pair of nodes. A non-time-constrained node is
included in a bucket if the sum of the additional
distance and the earliest service time of the first
node in the pair does not exceed the latest service
time of the second node in the pair. The additional
distance is the sum of the distance between the first
node in the pair and the non-time-constrained node
and the distance between the non-time-constrained
node and the second node in the pair. When the
contents of each bucket have been determined, the
complete initial route is formed in the following
manner:
1. Randomly select a pair of consecutive nodes in the

first group.
2. Repeat steps 4 - 5 a randomly selected number of

times. The randomly selected number must be be-
tween zero and the number of nodes in the asso-
ciated bucket.

3. Randomly select a node from the bucket. If the
node has already been visited, skip step 4.

4. If the node can be inserted aIong with the other
nodes that have been inserted previously (if any)
between the selected pair of nodes without result-
ing in a tardy arrival time at the second node of
the selected pair, then insert the node between the
selected pair, and mark the node as having been
visited. Otherwise, skip it.

5. Select the next pair and go to step 2. Repeat this

379

step for each pair of nodes in sequence. When the
last pair of nodes is used, continue the sequence
with the first pair until all consecutive pairs have
been used.

6. If there are non-time-constrained nodes in the
second group that have not been visited, then add
the node closest to the end of the route to the
end of the route, and mark the node as having
been visited. Repeat this step until all of the non
-time-constrained nodes in the second group have
been visited.

For example, consider a 13-node symmetric test
problem with the node-to-node distance matrix given
in Table 1 [5]. Baker [l] created time windows (ear-
liest service time and latest service time) for the test
problem.
Table 1. Node-to-node distance matrix for the exam-
ple problem

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 9 14 21 23 22 25 32 36 38 42 50 52

2 9 0 5 12 22 21 24 31 35 37 41 49 51

3 14 5 0 7 17 16 23 26 30 36 36 44 46

4 21 12 7 0 l? 21 30 27 37 43 31 37 39

5 23 22 17 10 0 19 28 25 35 41 29 31 29

6 22 21 16 21 19 0 9 10 16 22 20 28 30

7 25 24 23 30 28 9 0 7 11 13 17 25 27

8 32 31 26 27 25 10 7 0 10 16 10 18 20

9 36 35 30 37 35 16 11 10 0 6 6 14 16

10 38 37 36 43 41 22 13 16 6 0 12 12 20

11 42 41 36 31 29 20 17 10 6 12 0 8 10

12 50 49 44 37 31 28 25 18 14 12 8 0 10

13 52 51 46 39 29 30 27 20 16 20 10 10 0

Node t 1 2 3 4 5 6 7 8 9 10 11 12 13

ES1 0 7 12 0 29 48 0 64 0 80 92 100 110

Lfli * 11 16 * 33 52 l 68 * 84 96 104 114

Legend :
ESTi: Earliest Service Time for Node i
LSTi: Latest Service Time for Node i
*: No Constraint on Service Time

In this problem, the non-time-constrained nodes are
4, 7 and 9. The time-constrained nodes, after sorting
by the latest service time, are as follows: 2, 3, 5, 6,
8, 10, 11, 12 and 13. After using the heuristic method
to insert the non-time-constrained node in the bucket
9 we obtain the following result:

z
10 : 7, 9
11 : 9

5:4 12
6 13
8~7

The right side of the time-constrained node is the
non-time-constrained node in the bucket that could be
inserted between the previous time-constrained node
and the current time-constrained node. For example,
the bucket that contains the non-time-constrained
nodes 7 and 9 could be inserted between nodes 8
and 10. From this example, we found that, if no non
-time-constrained nodes were in the bucket, the node
corresponding to the time-constrained node is visited
during its associated time window. At least four

time-constrained nodes, nodes 3, 6, 12, and 13, are
visited during their associated time window.

In a traveling salesman problem, the number of
routes and endings at the same node (the depot)
corresponds to the permutations of the remaining n -
1 nodes. Hence, there are (n - l)! such routes, where
n is the number of nodes. Let n, be the number of
time-constrained nodes and nnrc be the number of
non-time-constrained nodes. The sum of n, and nntc
is equal to n, where n is the total number of nodes
in this study. First, when n, - 1 nodes which are
treated unordered combine with nntc nodes, giving a
total of n, + nntc - 1 to be permuted, there are (n,,
+ nnw - l)! permutations; in fact, n, - 1 nodes are
ordered at this point, and within (n,, + nntc - l)!
permutations, there are (n, - l)! repetitions. So, there
are (nt, + nntc - l)! / (ntc - l)! ways to insert those
nntc nodes into n, -1 ordered nodes.

There are a maximum of (ntc + nntC - l)! / (n,
- l)! routes using this method. In realistic problems,
the number of feasible routes is much fewer than the
maximum number, since some of the .routes would
violate time windows. The exhaustive search uses
(n, - l)! times more routes than our method.

3.2 Evaluation Function

Since GAS are guided by the evaluation function,
selecting an appropriate function is important. Any
feasible solution for the TSPTW would require that
the salesman visit each node during its associated
time window. A fitness function can induce time-
feasible tours by assessing penalties when time win-
dows are violated. The evaluation function is the sum
of the total route distance and the tardiness penalty.
It is defined as follows:

Fitness = TD + AvgDist * NT,
where
TD: Total route distance
AvgDist: Average distance between depot and all
nodes
NT: Number of tardy nodes
The penalty NT*AvgDist models the expected distance
that an additional vehicle would have to travel to
visit a tardy node that could not be visited on time
by the salesman.

3.3 Edge-Type Crossover

The edge-type crossover employs a class of opera-
tions which are modifications of the greedy crossover
operator of Grefenstette [9] for solving the TSP. For
the TSP. the problem considered is to minimize the
total route distance. However, for the TSPTW, the
problem considered is not only to minimize the total
route distance but also to visit each city during its
associated time window.

The edge-type crossover for the TSPTW involves
two steps. In the first step, the near-feasible solution
(where most nodes are visited during their associated
time window in a tour) is found, and in the second
step, infeasible nodes (nodes which were not visited

380

during their associated time windows) are improved,
and the traveling distance is minimized. The near-
feasible solution is usually easy to obtain after a
heuristical method is used to generate the initial
population of tours. We sort the nodes with time
window constraints by the latest service time, and a
route based on the sorted nodes is built. Non-time-
constrained nodes are inserted between time con-
strained nodes into time-feasible locations. Some
non-time-constrained nodes may have to added to the
end of the route. A significant percentage of the
population members are feasible after initialization.
Even within the infeasible tours, most of the nodes
are serviced during their associated time window.
Compared to the results of using the earliest closing
time crossover operator with a randomly generated
initial population, this saves us much of the time
needed to improve time-infeasible nodes.

The edge-type crossover consists of five crossover
operators which are the called the shorter edge,
longer edge, most nodes, randomly combined, and
nearest nodes crossover operators. The edge-type
crossover is used to introduce variety (shorter edge,
longer edge, most nodes, nearest nodes, etc.) between
the time-constrained nodes. The evaluation function
guides the search direction. This function penalizes
tours with nodes that violate a time constraint;
therefore, tours with infeasible nodes will more
probably stay in the population after evaluation at
each generation. The crossover operator and evalua-
tion function reduce the number of infeasible nodes
and minimize the traveled distance. The operator
constructs a single offspring using a designated par-
ent in combination with the other parent. The role of
the designated parent is reversed to create a second
offspring. The edge-type crossover is defined as fol-
lows:
Step 1. Current Node Scfection. The offspring tour
begins with a sequence of nodes taken from one
parent and called a partial tour. A random node is
chosen from the sorted time-constrained group and is
specified as the current node. This node serves as
the point to begin comparing edges and might or
might not be the depot (first node). The partial tour
is built from the depot and terminated at the current
node.
Step 2. best Edge Selection. The best edge is de-
termined using the distance between the current node
and its next time-constrained node or the sum of the
distances between the current node, all intervening
unvisited non-time-constrained nodes, and the next
time-constrained node. Edges leaving the node (as
represented in the two parents) are compared. Several
methods were available to select the better route
among edges from the two parents as follows:
a.Sliortcr Edge. The shorter edge is selected as the

better route. If the length of the two edges is the
same, then the edge containing the most non-time-
constrained nodes is selected.

b.Longcr Zdgc. The longer edge is selected as the
better route. If the length of the two edges is the
same, then the edge containing the most non-time-
constrained nodes is selected.

e.Most godcs. The edge with the most nodes that
had not yet been visited is selected as the better

route between the two time-constrained nodes. If
the number of nodes was the same, then the
shorter edge is selected as the better route,

d.RandomCy Comhncd. The best route for an edge is
selected by randomly choosing one of the three
previous methods for. each edge in the tour.

e.F&arest Nodes. Rather than comparing the two
edges, a better route is built from the route con-
taining in both edges by using the nearest neighbor
method. Any nodes that result in a tardy arrival
time at the end of the edges’ time-constrained node
are ignored.

Step 3. Tour ETtension. The partial tour is extended
using step 2 until the last node of the sorted time-
constrained group is reached.
Step 4. Tour Compfction. If some non-time-con-
strained nodes exist which are not visited, then the
node closest to the end of the partial tour is added
to the end of the partial tour until all of the non-
time-constrained nodes have been visited.
The newly created offspring replaces the parent if the
offspring’s performance is better than the parent’s.
Otherwise, it is discarded.

For example, consider a symmetric test problem
with the node-to-node distance matrix given in Table
1 [SJ. The following example shows how the shorter
edge crossover is processed. In this representation,
the integer in the parent field serves as a pointer to
the sequence number of the next stop. For example,
in Parent 1, the order in which the nodes are visited
is 1-2-345-6-7-8-10-9-11-12-13-1.

w--t 12 3 4 5 6 7 8 910111213

ESTi 0 7 12 0 29 48 0 64 0 80 92 100 110

LSTi * 11 16 * 33 52 l 68 * 84 96104114

Parent 1 2 3 4 5 6 7 8 10 11 9 12 13 1

AT, 164 9 14 21 31 50 59 66 88 82 94 102 112

w 0000000000000

EAT; 164 9 14 21 31 50 59 66 76 82 94 102 112

Parent 2 2 3 5 7 6 8 1 9 10 11 12 13 4

ATi 204 9 14 149 31 50 179 60 74 80 92 100 110

wTi 0000000400000

EATt 204 9 14i49 31 50179 64 74 80 92100110

Offspring 2 3 4 5 6 8 1 9 10 11 12 13 7

ATt 162 9 14 21 31 50 137 60 74 80 92100 110

wi 0000000400000

EATi 162 9 14 21 31 50 137 64 74 80 92 100 110

Legend:
ESTi: Earliest Service Time for Node i
LSTi: Latest Service Time for Node i
ATi: Arrival Time at Node i
WTi: Waiting Time at Node i
EATi: Effective Arrival Time at Node i

(AT1 + WTi)
*: No Constraint on Service Time

Considering Parent 1 in this example, a node is
chosen randomly from the time-constrained group.
Assume node 6 is chosen. There are two edges from

381

node 6 to node 8 for both parents, One edge is from
node 6 to node 8; the other edge is from node 6 to
node 7 to node 8. Two potential next visit nodes from
node 6 is 7 and 8. and 8 for both parents. The ar-
rival time for node 6 is 50 and the potential arrival
time at node 8 is the arrival time at node 6 plus the
travel time from node 6 to node 8 (50+10=60) or
from node 6 to node 7 and from node 7 to node 8
(50+9+7=66) for both parents. Thus, the best edge is
selected from node 6 to node 8 directly due to its
shorter edge. The process of selecting the shorter
edge and extending the tour is continued until reach-
ing node 13. The partial tour at node 13 is
l-2-345-6-8-10-11-12-13. The potential next node to
visit is node 1 for Parent 1 or node 4 for Parent 2.
Neither node 1 nor node 4 can be selected as a
next visit for node 13 because both of them have
been visited. Therefore, the next node to visit for
node 13 is selected from the non-time-constrained
group which has not been visited. Two non-time-
constrained nodes, nodes 7 and 9, have not been
visited yet. The distance from node 13 to node 7 and
node 9’ is 27 and 16, respectively. Hence, node 9 is
selected as the nekt node to visit because it is clos-
est to node 13. After node 7 is added at the end of
the partial tour, the offspring complete tour is gen-
erated.

The distance of the tour represented by parent 1 is
164, and the distance of the tour represented by
parent 2 is 172. The distance of the resulting off-
spring tour is 162.

4. Experimental Results

The test problems are standard problems from the
literature [l]. A population size of 100 was chosen.
The crossover rate was set at 60%. and no mutation
operator was used. Traditionally, the crossover oper-
ator is used immediately after the selection phase.
We used the Genesis Code of Grefenstette [B] but
modified it slightly. When the selection phase is
completed, the elitist policy is introduced: the 60
least fit of the population members are replaced by
the best 30 encountered thus far plus 30 randomly
generated members.

Table 2 displays the total route time (TT), the to-
tal route distance (TD), and the CPU time (CPU) of
applying the five types of crossover operators to the
ten well-known problems from the literature [l]. Each
column in the table represents a separate problem.
The number of customers and the percentage of cus-
tomers that have time window constraints on their
service times are identified.

The guaranteed optimal solutions obtained by the
disjunctive graph mode! are shown [l]. The optimal
solution of the problems with 90% time windows are
obtained at the first generation for all five crossover
operators. The optimal solution is easily obtained
because the initial population is heuristically selected
; much of the time needed to find a solution by im-
proving infeasible tours is saved because the heuristic
method generates a mostly feasible initial tour.
Therefore, the more the heuristic method is used to

generate the initial populations, the better the result
will be and more quickly obtained. The edge-type
crossover obtains the optimal solution in nine out of
ten cases. The exception is Problem B52. The ran-
domly combined crossover operator is able to reach
the optimal solution for all ten problems. For Problem
B52, in cases where optimality is not achieved for the
other five crossover operators, performance is ex-
tremely close to optimal.

Using the heuristic method to generate the initial
population of the tour and using the edge-type
crossover to manipulate genes, few tardiness nodes
are introduced. The traveling salesman problem with
time windows is solved in a manner similar to the
TSP if we assume that the total route time is equal
to the total route distance.

Our experiments involve measuring the tour length
for the first-time feasible tour generated by the al-
gorithm. We also track progress toward optimality,
which is a function of a number of generations. The
experiments showed that about 95% of this range is
consistently obtained with 50% or less of the total
number of generations. Thus, about half the CPU
time is employed to achieve the last 5% of the range
between first feasibility and the optimal solution. We
found that by using the edge-type crossover with a
heursitically selected initial population to solve the
problem we can easily obtain about 90% of the op-
timal solution (the optimal solution for these two
problems). When the number of nodes increases, the
existing feasible solution seems to increase, and the
CPU time is longer.

Compared with the CPU time used by the earliest
closing time crossover operator, it appeared that the
CPU time used by the edge-type crossover employing
the heuristically generated initial population is much
shorter, especially with respect to the problem having
90% of the nodes time-constrained. The additional
CPU time used by the crossover operator generating
an initial population randomly is expected, because
the solutions were found by improving infeasible
nodes.

5. Conclusions

We experimented with heuristically selected initial
population and a new type of crossover operator, the
edge-type crossover, for the traveling salesman prob-
lem with time windows. The method was applied to
10 well known small and moderate size traveling
salesman problems with time windows. The results
demonstrate that the proposed method is effective.
Particularly, using the heuristic method to generate
initial populations saves much time needed to find
the first feasible solution. These heuristics restrict
consideration to a small portion and possibly feasible
domain. All apparently infeasible tours are never
generated. This idea should also be applied to the
other constrained problems. We expect that the GAS
will scale up to relative large problems reasonably
well. We conclude that the new method is promising
and warrants further investigation on larger and more
complex problems.

382

Problem B11 B12
Customers 8 8
70 Windows
Optimal IT 65:

75
6384

Solution TD 6564 6384
CPU’ .4 .4

Shorter IT 6564 6384

we TD 6564 6384
CPU .08 .07

Longer TT 6564 6384

We TD 6564 6384
CPU .07 .07

Most TT 6564 6384
Nodes TD 6564 6384

CPU .08 .12
Randon$y ‘IT 6564 6384
Combined TD 6564 6384

CPU .lO .07
Nearest T-I- 6564 6384
Nodes TD 6564 6384

CPU .12 .13
Legend:

TT: Total Route Time
TD: Total Route Distnncc

Table 2. Computational results for the traveling salesman problem with time windows
B21 B22 1 B31 B32 B41 B42 B51 B52

12 12 21 21 29 29 50 50
90 75 90 75 90 75 90 75

162 162 354 354 4755 4755 5631 5632

158 I58 350 341 4753 4753 5631 5557
.7 .7 11.5 13.1 9.1 303.0 349.2 1148.3

162 162 354 354 4755 4755 5631 5637
158 158 350 341 4753 4753 5624 5562
.I0 -13 .17 2.48 .22 108.30 .42 835.87
162 162 354 354 4755 4755 5631 5637
158 158 350 341 4753 4753 5624 5562
.12 .13 -15 2.65 .25 51.98 .38 853.22
162 162 354 354 4755 4755 5631 5637
158 158 350 341 4753 4753 5624 5562
.lO .12 .15 2.88 .22 43.60 40 836.87
162 162 354 354 4755 4755 5631 5632
158 158 350 341 4753 4753 5624 5557
.08 .lO .18 1.87 .18 6.73 .43 953.53
162 162 354 354 4755 4755 5631 5637
158 158 350 341 4753 4753 5624 5562
.15 .17 .23 3.77 .33 148.33 .48 1063.67

CPU’: The CPU time used by the earliest closing time crossover operator to reach optimal solution
CPU: CPU seconds. Solbourne 5/802

References

[l] Baker, IS. (1983). An Exact Algorithm for the
Time Constrained Traveling Salesman Problem, Op-
erations Research 31, 938-945.

[2] Baker, E. and J.R. Schaffer (1986). Solution Im-
provement Heuristics for the Vehicle Routing and
Scheduling Problem with Time Window Constraints,
American Journal of Mathematical and Management
Sciences, Special Issue 6 (3-4). 261-300.

[3] Christofides, N., A. Mingoui and P. Toth (1981).
State-Space Relaxation Procedures for the Computation
of Bounds Problems, Networks 11, 145-164.

[4] Davis, L. and M. Steenstrup (1987). Genetic Al-
gorithms and Simulated Annealing: An Overview, in
Genetic ACgorithms and Simufatcd AnneaCing, in
Davis (ed.), Morgan Kaufmann, Los Altos, California
, 1-11.

[5] Eilon, S.. C. Watson-Gandy and N. Christofides
(1971). %Xstribution Management, Griffin Press, Lon-
don, England.

[6] Goldberg, D.E. and R. Lingle, Jr (1985). Alleles,
Loci, and the Traveling Salesman Problem, in
Grefenstette (ed.), Genetic Algorithms and Their Ap-
plications: Proceedings of the Second International

383

Conference on Genetic Algorithms, 154-159.

[7] Goldberg, D.E. (1989). Genetic Afgorithms in
Search Optimization, and 9dachw Learning, Addison
-Wesley, New York, New York.

[8] Grefenstette, J.J. (1984). a User’s Guide to
GE?@5IS, Technical Report (X-84-11. Computer Sci-
ence Department, Vanderbilt University, Nashville,
Tennessee.

[9] Grefenstette, J.J., R. Gopal, B.J. Rosmaita and D.
Van Gucht (1985). Genetic Algorithms for the Trav-
eling Salesman Problem, in Grefenstette (ed:), Pro-
ceedings of the First International Conference on
Genetic Algorithms and Their Applications, 160-168.

[lo] Holland, J.H. (1975). daptation in %$tural and
Artificid Systems, University of Michigan Press, Ann
Arbor. Michigan.

[ll] Lenstra, J. and A. Rinnooy Kan (1981). Com-
plexity of Vehicle Routing and Scheduling Problems,
Networks 11, 221-227.

[12] Nygard, Kendall E. and Cheng-Hong Yang
(1992). Genetic Algorithm for the Traveling Salesman
Problem with Time Windows, Computer Science and
Optrations &zscarch: New Deudopmcnt in Their In-
terfaces, Pergamon Press, Oxford, England, 411-423.

