
The Effects of Initial Population in Genetic Search 
for Time Constrained Traveling Salesman Problems 

Cheng-Hong Yang Kendall IL Npgard 

Department of Electronic Engineering Department of Computer Science and Operations Research 

National Kaohsiung Institute of Technology 

Kaohsiang, Taiwan 80’782 

26stract: WC dcscri6c the application of ljcnctic AC- 
gorithms to the travding salesman pro6Cem with time 
windows. A new type of crossover operator, called 
edge-type crossoucr, with a heuristically sclcctcd initiaf 
population, is used in the genetic search. When com- 
pared with alternative methods from the literature, 
experiments indicaq that the heuristic initialization. 
speeds the Bcnctic search process. 

1. Introduction 

Genetic Algorithms (GAS) are stochastic search al- 
gorithms that were pioneered by Holland [Ill. A GA 
utilizes an artificial chromosome that represents a 
solution to the problem of interest, and attempts to 
successively find better solutions using Darwinian 
principles of survival of the fittest genes. It has been 
demonstrated, theoretically and empirically, that GAS 
are robust and effective in a variety of problems. 

GAS use probabilistic transition rules to guide their 
search. A genetic search is conducted in multiple 
dimensions by recombining structures and then eval- 
uating the new structures. GAS enable high fitness 
population members structures to be combined with 
a structured yet randomized information exchange. 
New test structures are introduced in every genera- 
tion, bringing together the fittest pieces of the old 
with an occasional new part. Although they are ran- 
domized, Genetic Algorithms do not follow a simple 
random walk. They make good use of historical in- 
formation to discover new search points in order to 
improve performance [7]. 

There are many search algorithms that can be used 
to heuristically find a high performance solution, but 
if the solution space is large, it is important to use 
an efficient algorithm. Most of the published methods 
for solving the time window constrained traveling 
salesman problem are based on mathematical pro- 
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gramming models. In this research, our attempts to 
solve TSPTW’s with GAS led to a new type of 
crossover operator that consistently provides high 
performance solutions. 

2. Traveling Salesman Problems with 
Time Windows 

The traveling salesman problem (TSP) is a proto- 
typical combinational optimization problem. In the 
TSP. a salesman must make a complete tour of a 
given complete graph with N nodes (cities) and find 
the shortest Hamiltonian circuit through all nodes of 
the graph. The Hamiltonian circuit must pass through 
each of the nodes in the graph exactly once. 

The traveling salesman problem with time windows 
(TSPTW) is an extension of the TSP. In the TSPTW, 
a salesman starts at a specific node (the depot) and 
must visit each node exactly once and return to the 
depot. The visit to each node must occur within a 
time window. For example, if ESTi and LSTi repre- 
sent the earIiest service and latest service times of a 
specified time window for node i, then the salesman 
must visit node i between times ESTi and L.Sl-+ When 
a salesman arrives at a node before the earliest ser- 
vice time, the salesman must wait for that time 
window to open. Some nodes may have no time 
windows. The objective of the TSPTW is to find the 
routing order that minimizes total route distance and 
visits each node during its associated time window. 

Christofides, Mingozzi, and Toth [3] developed a 
branch and bound algorithm to solve the TSPTW us- 
ing a dynamic programming state space relaxation 
procedure to compute bounding information. A branch 
and bound algorithm for the TSPTW presented by 
Baker [l] exploits the structure of the dual of a re- 
laxation of the proposed problem, producing lower 
bounds by solving a longest path problem on an 
acyclic network. In that study, test problems involving 
from 8 to 50 customers were produced by adding 
time windows to some of the nodes in the standard 
TSP test problems of Eilon et of. [5]. Baker and 
Schaffer [2] produced a heuristic solver for the mul- 
tiple vehicle routing and scheduling problem with 
time window constraints effectively by using branch 
exchange techniques, such as the well-known 2-opt 
and 3.opt procedures [2]. This procedure can also 
solve the TSPTW. Nygard and Yang [12] developed 
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a new crossover operator, called the earliest closing 
time crossover operator, to solve the TSPTW using 
Genetic Algorithms (GA). That method consistently 
provides high performance solutions. In this paper, 
we solve the same test problems, but using a more 
effective method. 

The TSP is simply stated, but its simplicity is de- 
ceptive. It is an NP-complete problem. The incorpo- 
ration of time window constraints significantly in- 
creases the complexity of the TSP. The TSPTW is 
NP-hard [ 111. Like all NP-hard problems, the time 
required for any known algorithm to compute an ex- 
act solution of the TSP increases exponentially with 
the number of nodes. 

3. Experimental Procedures 

To apply a GA, candidate solutions to the problem 
within the space to be searched must be mapped onto 
an appropriate representation for the artificial chro- 
mosome. An adjacency representation was used in 
this search. In this representation, there is an edge in 
the tour from node i to node j iff the allele in po- 
sition i is j [9]. 

The three components of a basic GA are selection 
of population members for reproduction, recombina- 
tion into new members, and evaluation of the fitness 
of members. The selection function is an evolutionary 
function that eliminates trials solutions that are rela- 
tively ineffective. The quality of the overall result 
and the computational effort required to achieve 
convergence critically depend on the selection crite- 
ria. Recombination usually involves genetic operators 
called crossover and mutation. Crossover is the pri- 
mary genetic recombination operator that was in- 
spired by knowledge of natural genetics. Under the 
crossover operator, two population members produce 
offspring by exchanging portions of their artificial 
chromosomes. The crossover operator we devised, 
called the edge-type crossover, is discussed in detail 
in section 3.3. Mutation is used to introduce variety 
into the population. In mutation, bits in the artificial 
chromosome are randomly switched with a (typically 
small) probability. It is a heuristic for avoiding being 
trapped in a single point of local minimality. In 
general, we can’t hope to search the space globally. 
Since GAS are direct search algorithms, a perfor- 
mance evaluation function is used to evaluate each 
point in the search space. The performance evaluation 
function used in our application is the sum of the 
total route distance and the the number of tardy 
nodes multiplied by the average distance between 
depot and node. In section 3.2, we discuss this func- 
tion in detail. In our experiments, the algorithm was 
terminated by reaching a prespecified number of tri- 
als. 

3.1 Initiaiization of the Population 

The initial population usually consists of randomly 
generated tours. In this case, the initial population of 
a tour for the TSPTW is generated by randomly se- 

lecting the next visit for each node from a given list 
of nodes that have not yet been visited until all 
nodes have been visited, then returning to the node 
of first departure. As an alternative to the randomly 
generated initial population, it is likely to be advan- 
tageous to begin the GAS with a population of high 
performance candidate solutions. The heuristically se- 
lected initial population of the tour used in this study 
is generated under restrictions discussed below. 

We use the term “time-constrained node” to de- 
scribe nodes with time windows. Non-time-constrained 
nodes have no constraints on when they can be vis- 
ited. Assuming that time windows do not overlap, a 
feasible TSPTW solution can be viewed as a route 
constructed from the nodes with the time-constrained 
nodes sorted by latest service time. Since the time- 
constrained nodes are sorted by latest service time, 
there is only one order in which they may be visit- 
ed. The non-time-constrained nodes are then placed in 
the route either between time-constrained nodes or at 
the end of the route. The number of routes depends 
on the possible combinations of the non-time-con- 
strained nodes. 

The initial population of the tour is constructed as 
follows: first, the nodes are separated into two 
groups, time-constrained and non-time-constrained. 
The first group contains the time-constrained nodes 
sorted by latest service time and forms a partial 
tour. The second group contains the non-time-con- 
strained nodes. These nodes must be inserted between 
the nodes of the first group or added to the end of 
the first group to form a complete route. 

Associated with each pair of nodes in the first 
group is a bucket. The number of buckets is equal to 
the number of time-constrained nodes. Each bucket 
contains those non-time-constrained nodes in the 
second group that can be visited between the associ- 
ated pair of nodes. A non-time-constrained node is 
included in a bucket if the sum of the additional 
distance and the earliest service time of the first 
node in the pair does not exceed the latest service 
time of the second node in the pair. The additional 
distance is the sum of the distance between the first 
node in the pair and the non-time-constrained node 
and the distance between the non-time-constrained 
node and the second node in the pair. When the 
contents of each bucket have been determined, the 
complete initial route is formed in the following 
manner: 
1. Randomly select a pair of consecutive nodes in the 

first group. 
2. Repeat steps 4 - 5 a randomly selected number of 

times. The randomly selected number must be be- 
tween zero and the number of nodes in the asso- 
ciated bucket. 

3. Randomly select a node from the bucket. If the 
node has already been visited, skip step 4. 

4. If the node can be inserted aIong with the other 
nodes that have been inserted previously (if any) 
between the selected pair of nodes without result- 
ing in a tardy arrival time at the second node of 
the selected pair, then insert the node between the 
selected pair, and mark the node as having been 
visited. Otherwise, skip it. 

5. Select the next pair and go to step 2. Repeat this 
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step for each pair of nodes in sequence. When the 
last pair of nodes is used, continue the sequence 
with the first pair until all consecutive pairs have 
been used. 

6. If there are non-time-constrained nodes in the 
second group that have not been visited, then add 
the node closest to the end of the route to the 
end of the route, and mark the node as having 
been visited. Repeat this step until all of the non 
-time-constrained nodes in the second group have 
been visited. 

For example, consider a 13-node symmetric test 
problem with the node-to-node distance matrix given 
in Table 1 [5]. Baker [l] created time windows (ear- 
liest service time and latest service time) for the test 
problem. 
Table 1. Node-to-node distance matrix for the exam- 
ple problem 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 0 9 14 21 23 22 25 32 36 38 42 50 52 

2 9 0 5 12 22 21 24 31 35 37 41 49 51 

3 14 5 0 7 17 16 23 26 30 36 36 44 46 

4 21 12 7 0 l? 21 30 27 37 43 31 37 39 

5 23 22 17 10 0 19 28 25 35 41 29 31 29 

6 22 21 16 21 19 0 9 10 16 22 20 28 30 

7 25 24 23 30 28 9 0 7 11 13 17 25 27 

8 32 31 26 27 25 10 7 0 10 16 10 18 20 

9 36 35 30 37 35 16 11 10 0 6 6 14 16 

10 38 37 36 43 41 22 13 16 6 0 12 12 20 

11 42 41 36 31 29 20 17 10 6 12 0 8 10 

12 50 49 44 37 31 28 25 18 14 12 8 0 10 

13 52 51 46 39 29 30 27 20 16 20 10 10 0 

Node t 1 2 3 4 5 6 7 8 9 10 11 12 13 

ES1 0 7 12 0 29 48 0 64 0 80 92 100 110 

Lfli * 11 16 * 33 52 l 68 * 84 96 104 114 

Legend : 
ESTi: Earliest Service Time for Node i 
LSTi: Latest Service Time for Node i 
*: No Constraint on Service Time 

In this problem, the non-time-constrained nodes are 
4, 7 and 9. The time-constrained nodes, after sorting 
by the latest service time, are as follows: 2, 3, 5, 6, 
8, 10, 11, 12 and 13. After using the heuristic method 
to insert the non-time-constrained node in the bucket 
9 we obtain the following result: 

z 
10 : 7, 9 
11 : 9 

5:4 12 
6 13 
8~7 

The right side of the time-constrained node is the 
non-time-constrained node in the bucket that could be 
inserted between the previous time-constrained node 
and the current time-constrained node. For example, 
the bucket that contains the non-time-constrained 
nodes 7 and 9 could be inserted between nodes 8 
and 10. From this example, we found that, if no non 
-time-constrained nodes were in the bucket, the node 
corresponding to the time-constrained node is visited 
during its associated time window. At least four 

time-constrained nodes, nodes 3, 6, 12, and 13, are 
visited during their associated time window. 

In a traveling salesman problem, the number of 
routes and endings at the same node (the depot) 
corresponds to the permutations of the remaining n - 
1 nodes. Hence, there are (n - l)! such routes, where 
n is the number of nodes. Let n, be the number of 
time-constrained nodes and nnrc be the number of 
non-time-constrained nodes. The sum of n, and nntc 
is equal to n, where n is the total number of nodes 
in this study. First, when n, - 1 nodes which are 
treated unordered combine with nntc nodes, giving a 
total of n, + nntc - 1 to be permuted, there are (n,, 
+ nnw - l)! permutations; in fact, n, - 1 nodes are 
ordered at this point, and within (n,, + nntc - l)! 
permutations, there are (n, - l)! repetitions. So, there 
are (nt, + nntc - l)! / (ntc - l)! ways to insert those 
nntc nodes into n, -1 ordered nodes. 

There are a maximum of (ntc + nntC - l)! / (n, 
- l)! routes using this method. In realistic problems, 
the number of feasible routes is much fewer than the 
maximum number, since some of the .routes would 
violate time windows. The exhaustive search uses 
(n, - l)! times more routes than our method. 

3.2 Evaluation Function 

Since GAS are guided by the evaluation function, 
selecting an appropriate function is important. Any 
feasible solution for the TSPTW would require that 
the salesman visit each node during its associated 
time window. A fitness function can induce time- 
feasible tours by assessing penalties when time win- 
dows are violated. The evaluation function is the sum 
of the total route distance and the tardiness penalty. 
It is defined as follows: 

Fitness = TD + AvgDist * NT, 
where 
TD: Total route distance 
AvgDist: Average distance between depot and all 
nodes 
NT: Number of tardy nodes 
The penalty NT*AvgDist models the expected distance 
that an additional vehicle would have to travel to 
visit a tardy node that could not be visited on time 
by the salesman. 

3.3 Edge-Type Crossover 

The edge-type crossover employs a class of opera- 
tions which are modifications of the greedy crossover 
operator of Grefenstette [9] for solving the TSP. For 
the TSP. the problem considered is to minimize the 
total route distance. However, for the TSPTW, the 
problem considered is not only to minimize the total 
route distance but also to visit each city during its 
associated time window. 

The edge-type crossover for the TSPTW involves 
two steps. In the first step, the near-feasible solution 
(where most nodes are visited during their associated 
time window in a tour) is found, and in the second 
step, infeasible nodes (nodes which were not visited 
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during their associated time windows) are improved, 
and the traveling distance is minimized. The near- 
feasible solution is usually easy to obtain after a 
heuristical method is used to generate the initial 
population of tours. We sort the nodes with time 
window constraints by the latest service time, and a 
route based on the sorted nodes is built. Non-time- 
constrained nodes are inserted between time con- 
strained nodes into time-feasible locations. Some 
non-time-constrained nodes may have to added to the 
end of the route. A significant percentage of the 
population members are feasible after initialization. 
Even within the infeasible tours, most of the nodes 
are serviced during their associated time window. 
Compared to the results of using the earliest closing 
time crossover operator with a randomly generated 
initial population, this saves us much of the time 
needed to improve time-infeasible nodes. 

The edge-type crossover consists of five crossover 
operators which are the called the shorter edge, 
longer edge, most nodes, randomly combined, and 
nearest nodes crossover operators. The edge-type 
crossover is used to introduce variety (shorter edge, 
longer edge, most nodes, nearest nodes, etc.) between 
the time-constrained nodes. The evaluation function 
guides the search direction. This function penalizes 
tours with nodes that violate a time constraint; 
therefore, tours with infeasible nodes will more 
probably stay in the population after evaluation at 
each generation. The crossover operator and evalua- 
tion function reduce the number of infeasible nodes 
and minimize the traveled distance. The operator 
constructs a single offspring using a designated par- 
ent in combination with the other parent. The role of 
the designated parent is reversed to create a second 
offspring. The edge-type crossover is defined as fol- 
lows: 
Step 1. Current Node Scfection. The offspring tour 
begins with a sequence of nodes taken from one 
parent and called a partial tour. A random node is 
chosen from the sorted time-constrained group and is 
specified as the current node. This node serves as 
the point to begin comparing edges and might or 
might not be the depot (first node). The partial tour 
is built from the depot and terminated at the current 
node. 
Step 2. best Edge Selection. The best edge is de- 
termined using the distance between the current node 
and its next time-constrained node or the sum of the 
distances between the current node, all intervening 
unvisited non-time-constrained nodes, and the next 
time-constrained node. Edges leaving the node (as 
represented in the two parents) are compared. Several 
methods were available to select the better route 
among edges from the two parents as follows: 
a.Sliortcr Edge. The shorter edge is selected as the 

better route. If the length of the two edges is the 
same, then the edge containing the most non-time- 
constrained nodes is selected. 

b.Longcr Zdgc. The longer edge is selected as the 
better route. If the length of the two edges is the 
same, then the edge containing the most non-time- 
constrained nodes is selected. 

e.Most godcs. The edge with the most nodes that 
had not yet been visited is selected as the better 

route between the two time-constrained nodes. If 
the number of nodes was the same, then the 
shorter edge is selected as the better route, 

d.RandomCy Comhncd. The best route for an edge is 
selected by randomly choosing one of the three 
previous methods for. each edge in the tour. 

e.F&arest Nodes. Rather than comparing the two 
edges, a better route is built from the route con- 
taining in both edges by using the nearest neighbor 
method. Any nodes that result in a tardy arrival 
time at the end of the edges’ time-constrained node 
are ignored. 

Step 3. Tour ETtension. The partial tour is extended 
using step 2 until the last node of the sorted time- 
constrained group is reached. 
Step 4. Tour Compfction. If some non-time-con- 
strained nodes exist which are not visited, then the 
node closest to the end of the partial tour is added 
to the end of the partial tour until all of the non- 
time-constrained nodes have been visited. 
The newly created offspring replaces the parent if the 
offspring’s performance is better than the parent’s. 
Otherwise, it is discarded. 

For example, consider a symmetric test problem 
with the node-to-node distance matrix given in Table 
1 [SJ. The following example shows how the shorter 
edge crossover is processed. In this representation, 
the integer in the parent field serves as a pointer to 
the sequence number of the next stop. For example, 
in Parent 1, the order in which the nodes are visited 
is 1-2-345-6-7-8-10-9-11-12-13-1. 

w--t 12 3 4 5 6 7 8 910111213 

ESTi 0 7 12 0 29 48 0 64 0 80 92 100 110 

LSTi * 11 16 * 33 52 l 68 * 84 96104114 

Parent 1 2 3 4 5 6 7 8 10 11 9 12 13 1 

AT, 164 9 14 21 31 50 59 66 88 82 94 102 112 

w 0000000000000 

EAT; 164 9 14 21 31 50 59 66 76 82 94 102 112 

Parent 2 2 3 5 7 6 8 1 9 10 11 12 13 4 

ATi 204 9 14 149 31 50 179 60 74 80 92 100 110 

wTi 0000000400000 

EATt 204 9 14i49 31 50179 64 74 80 92100110 

Offspring 2 3 4 5 6 8 1 9 10 11 12 13 7 

ATt 162 9 14 21 31 50 137 60 74 80 92100 110 

wi 0000000400000 

EATi 162 9 14 21 31 50 137 64 74 80 92 100 110 

Legend: 
ESTi: Earliest Service Time for Node i 
LSTi: Latest Service Time for Node i 
ATi: Arrival Time at Node i 
WTi: Waiting Time at Node i 
EATi: Effective Arrival Time at Node i 

(AT1 + WTi) 
*: No Constraint on Service Time 

Considering Parent 1 in this example, a node is 
chosen randomly from the time-constrained group. 
Assume node 6 is chosen. There are two edges from 
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node 6 to node 8 for both parents, One edge is from 
node 6 to node 8; the other edge is from node 6 to 
node 7 to node 8. Two potential next visit nodes from 
node 6 is 7 and 8. and 8 for both parents. The ar- 
rival time for node 6 is 50 and the potential arrival 
time at node 8 is the arrival time at node 6 plus the 
travel time from node 6 to node 8 (50+10=60) or 
from node 6 to node 7 and from node 7 to node 8 
(50+9+7=66) for both parents. Thus, the best edge is 
selected from node 6 to node 8 directly due to its 
shorter edge. The process of selecting the shorter 
edge and extending the tour is continued until reach- 
ing node 13. The partial tour at node 13 is 
l-2-345-6-8-10-11-12-13. The potential next node to 
visit is node 1 for Parent 1 or node 4 for Parent 2. 
Neither node 1 nor node 4 can be selected as a 
next visit for node 13 because both of them have 
been visited. Therefore, the next node to visit for 
node 13 is selected from the non-time-constrained 
group which has not been visited. Two non-time- 
constrained nodes, nodes 7 and 9, have not been 
visited yet. The distance from node 13 to node 7 and 
node 9’ is 27 and 16, respectively. Hence, node 9 is 
selected as the nekt node to visit because it is clos- 
est to node 13. After node 7 is added at the end of 
the partial tour, the offspring complete tour is gen- 
erated. 

The distance of the tour represented by parent 1 is 
164, and the distance of the tour represented by 
parent 2 is 172. The distance of the resulting off- 
spring tour is 162. 

4. Experimental Results 

The test problems are standard problems from the 
literature [l]. A population size of 100 was chosen. 
The crossover rate was set at 60%. and no mutation 
operator was used. Traditionally, the crossover oper- 
ator is used immediately after the selection phase. 
We used the Genesis Code of Grefenstette [B] but 
modified it slightly. When the selection phase is 
completed, the elitist policy is introduced: the 60 
least fit of the population members are replaced by 
the best 30 encountered thus far plus 30 randomly 
generated members. 

Table 2 displays the total route time (TT), the to- 
tal route distance (TD), and the CPU time (CPU) of 
applying the five types of crossover operators to the 
ten well-known problems from the literature [l]. Each 
column in the table represents a separate problem. 
The number of customers and the percentage of cus- 
tomers that have time window constraints on their 
service times are identified. 

The guaranteed optimal solutions obtained by the 
disjunctive graph mode! are shown [l]. The optimal 
solution of the problems with 90% time windows are 
obtained at the first generation for all five crossover 
operators. The optimal solution is easily obtained 
because the initial population is heuristically selected 
; much of the time needed to find a solution by im- 
proving infeasible tours is saved because the heuristic 
method generates a mostly feasible initial tour. 
Therefore, the more the heuristic method is used to 

generate the initial populations, the better the result 
will be and more quickly obtained. The edge-type 
crossover obtains the optimal solution in nine out of 
ten cases. The exception is Problem B52. The ran- 
domly combined crossover operator is able to reach 
the optimal solution for all ten problems. For Problem 
B52, in cases where optimality is not achieved for the 
other five crossover operators, performance is ex- 
tremely close to optimal. 

Using the heuristic method to generate the initial 
population of the tour and using the edge-type 
crossover to manipulate genes, few tardiness nodes 
are introduced. The traveling salesman problem with 
time windows is solved in a manner similar to the 
TSP if we assume that the total route time is equal 
to the total route distance. 

Our experiments involve measuring the tour length 
for the first-time feasible tour generated by the al- 
gorithm. We also track progress toward optimality, 
which is a function of a number of generations. The 
experiments showed that about 95% of this range is 
consistently obtained with 50% or less of the total 
number of generations. Thus, about half the CPU 
time is employed to achieve the last 5% of the range 
between first feasibility and the optimal solution. We 
found that by using the edge-type crossover with a 
heursitically selected initial population to solve the 
problem we can easily obtain about 90% of the op- 
timal solution (the optimal solution for these two 
problems). When the number of nodes increases, the 
existing feasible solution seems to increase, and the 
CPU time is longer. 

Compared with the CPU time used by the earliest 
closing time crossover operator, it appeared that the 
CPU time used by the edge-type crossover employing 
the heuristically generated initial population is much 
shorter, especially with respect to the problem having 
90% of the nodes time-constrained. The additional 
CPU time used by the crossover operator generating 
an initial population randomly is expected, because 
the solutions were found by improving infeasible 
nodes. 

5. Conclusions 

We experimented with heuristically selected initial 
population and a new type of crossover operator, the 
edge-type crossover, for the traveling salesman prob- 
lem with time windows. The method was applied to 
10 well known small and moderate size traveling 
salesman problems with time windows. The results 
demonstrate that the proposed method is effective. 
Particularly, using the heuristic method to generate 
initial populations saves much time needed to find 
the first feasible solution. These heuristics restrict 
consideration to a small portion and possibly feasible 
domain. All apparently infeasible tours are never 
generated. This idea should also be applied to the 
other constrained problems. We expect that the GAS 
will scale up to relative large problems reasonably 
well. We conclude that the new method is promising 
and warrants further investigation on larger and more 
complex problems. 
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Problem B11 B12 
Customers 8 8 
70 Windows 
Optimal IT 65: 

75 
6384 

Solution TD 6564 6384 
CPU’ .4 .4 

Shorter IT 6564 6384 

we TD 6564 6384 
CPU .08 .07 

Longer TT 6564 6384 

We TD 6564 6384 
CPU .07 .07 

Most TT 6564 6384 
Nodes TD 6564 6384 

CPU .08 .12 
Randon$y ‘IT 6564 6384 
Combined TD 6564 6384 

CPU .lO .07 
Nearest T-I- 6564 6384 
Nodes TD 6564 6384 

CPU .12 .13 
Legend: 

TT: Total Route Time 
TD: Total Route Distnncc 

Table 2. Computational results for the traveling salesman problem with time windows 
B21 B22 1 B31 B32 B41 B42 B51 B52 

12 12 21 21 29 29 50 50 
90 75 90 75 90 75 90 75 

162 162 354 354 4755 4755 5631 5632 

158 I58 350 341 4753 4753 5631 5557 
.7 .7 11.5 13.1 9.1 303.0 349.2 1148.3 

162 162 354 354 4755 4755 5631 5637 
158 158 350 341 4753 4753 5624 5562 
.I0 -13 .17 2.48 .22 108.30 .42 835.87 
162 162 354 354 4755 4755 5631 5637 
158 158 350 341 4753 4753 5624 5562 
.12 .13 -15 2.65 .25 51.98 .38 853.22 
162 162 354 354 4755 4755 5631 5637 
158 158 350 341 4753 4753 5624 5562 
.lO .12 .15 2.88 .22 43.60 40 836.87 
162 162 354 354 4755 4755 5631 5632 
158 158 350 341 4753 4753 5624 5557 
.08 .lO .18 1.87 .18 6.73 .43 953.53 
162 162 354 354 4755 4755 5631 5637 
158 158 350 341 4753 4753 5624 5562 
.15 .17 .23 3.77 .33 148.33 .48 1063.67 

CPU’: The CPU time used by the earliest closing time crossover operator to reach optimal solution 
CPU: CPU seconds. Solbourne 5/802 
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