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ABSTRACT A computer solution to the problem of automatic location of objects n digital pictures 1s presented
A self-scaling local edge detector that can be applied i parallel on a picture 1s described Clustering algonthms
and sequential boundary following algorithms process the edge data to local images of objects and generate a
data structure that represents the maged objects
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1. Introduction

A substantial amount of research has been done in developing techniques for locating
objects of interest automatically in digitized pictures Drawing the boundaries around
objects 1s essential for pattern recognition, object tracking, image enhancement, data
reduction, and various other applications. References [18-20] constitute a good survey
of research and applications in 1mage processing and picture analysis.

Most researchers of picture analysis have assumed that (1) the image of an object 1s
more or less uniform or smooth 1n 1ts local properties (that 1s, illumination, color, and
local texture are smoothly changing inside the image of an object); and (2) there 1s
detectable discontinuity in local properties between images of two different objects. We
will adopt these two assumptions in this paper and assume no textural image (see [1] for
an example of texture image analysis that does not make these assumptions).

The work on automatic location of objects in digitized tmages has split into two
approaches: edge detection and edge following versus region growing. Edge detection
applies local independent operators over the picture to detect edges and then uses
algorithms to trace the boundaries by following the local edge detected A recent survey
of literature in this area is given in [7]. The region growing approach uses various
clustering algorithms to grow regions of almost uniform local properties in the image (see
[5, 2, 11, 24} for typical applications) More detailed references will be given later

In this paper the two approaches are combined to complement each other; the result is
a more powerful mechanism to segment pictures into objects. We developed a new edge
detector and combined 1t with new region growing techniques to locate objects; in so
doing we resolved the confusion in regular edge following that results where more than
one 1solated object on a uniform background is in the scene (see [17]).

This report describes the following contributions: (1) a new and “‘optimal” (given
certain assumptions) edge detector; (2) a simple one-pass region growing algorithm that
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is implemented on a minicomputer, utilizing the edge detector output; (3) the applica-
tion of path generator algorithms and ‘‘shortest path” algorithms for boundary following
to close open-edge lines into boundaries around regions; (4) special purpose region
growing intended to close open edges (cracks); and (5) a special clustering algorithm that
simplifies the region structure resulting from the application of (1) through (4)

2. Definition of Terms

The input is expected to be in the matrix form V(i,j), i=1,... N, j=1,..., M,
where V is a vector in R” and 7 is a function of the sensory system, usually 1 (gray level
picture), 3 (color or x, y, z coordinates of the surface in the scanning direction), or 6
(color and 3-D information). An edge unit separates two adjacent matrix points; that is,
an edge unit is between (¢,7) and (i + 1,f) or between (i,j) and (i,j + 1) for some i,j (see
Figure 1).

An edge unit is usually adjacent on both ends to other edge umits. There are 64
combinations of edge units continuing an edge umit, since each of the edge units ¢, e,, €3,
e}, e}, e} in Figure 1 may or may not exist.

Two points on the grid (7, J) and (K, L) are said to be in the same region if there is a
path sequence (i,,j,), . . . , (n,jn) such thati, =1,j, = J,i, = K, andj, = L, where
(s jm) is adjacent to iy, jmea) form =1, . . . ,n — 1 and there is no edge unit between
the two. A region will be a maximum set of points satisfying that property.

An edge line (or an edge) between region R, and region R, is the maximal sequence of
adjacent edge units such that each edge unit in the sequence is between two matrix
points, one belonging to R, and the other belonging to R, It 1s possible that an edge line
is mside a region (R, = Ry).

An edge line that is between two different regions 1s called a boundary. An edge line
that is inside a region is called a crack. Anopen crack is a crack in which at least one end
terminates without connecting to any edge line. A closed crack 1s one in which each end
terminates on another edge line For instance cracks appear when an object 1s smoothly
disappearing into the background on one side and has detectable discontinuity on the
other side, as shown in Figure 2.

Using the above definitions, this report first presents an edge detector that detects
edge units 1n parallel locally on the whole image. Then a region grower that groups
matrix points into regions and edge units into boundaries and cracks is presented. A local
region grower that tries to break a region with a crack 1n 1t into two regions for which the
crack 1s part of the common boundary is presented next Alternatively, an open crack
extending algorithm is suggested to connect the open edge unit of the crack to another
edge line.

3. The Local Edge Detector

The edge operator 1s a detector of local discontinuity in an1mage When applied between
two adjacent points such as (i, j) and (i + 1, ), it should return a value that will measure
the confidence that there 1s an edge between (i, j) and (i + 1, j). Since we work with noisy
input to achieve rehability, the operator must look at two 2-dimenstonal (2-D) neighbor-
hoods N, and N, to obtain a reliable value Neighborhood N, includes (i, j) and a few
adjacent points; N, includes (i + 1, ) and a few adjacent points; and N, " N, = 0. As a
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result the value returned will measure the confidence that the neighborhoods belong to
images of different objects

Edge detection 1s actually composed of three components: (1) measuring differences
between image structures in the two neighborhoods, (2) selecting the proper neighbor-
hoods; and (3) locking on the exact position of the edge. Discussion of each of these
steps follows.

4. Measuring Differences in Structure Between Two Neighborhoods

Any techniques that measure structural differences must make some assumptions (ex-
plicitly or implicitly) concerming the structure of an edge and the area inside a region.
Binford and Hershkovitz [4] suggest three possible ideal edges defined by the intensity
profile on a normal-to-the-edge line (Figure 3).

All of these 1dealized edges are 1n reality washed with Gaussian noise on both sides,
where the noise is both hardware noise and the result of surface irregularities. Basically,
the decision 1s between two hypotheses:

H,: the readings 1n N, and N, are taken from the same object;

H,: the readings in N, and N, are taken from different objects
Neighborhoods N, and N, are the neighborhoods mentioned in Section 3, and the
decision as to how to choose them will be described in Section 5.

An optimal (best for its size) decision between H, and H, will utihze the maximum
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likelihood ratio as follows: Let P, be the maximum hkelihood estimate of the structure
(reading in N, and N,), given that H, is true, and let P; be the maximum likelihood
estimate of the structure, assuming that H, is true. Then choose H, when P,/P, >
K, choose Hy, when P,/P, < K, and choose at random when P,/P, = K

This decision will be optimal for a given allowed probability of false negative (see the
Neyman-Pearson Test [8, p. 55]); hence if the structure assumptions are valid we have
an ideal edge detector, given only readings 1n N, and N,. (We deal with Gaussian
probabilities; hence we ignore P,/P, = K.) The conclusion is that P,/P, is the best
measure of the edge strength. Following are two examples of applying these principles to
the edges of types (a) and (b) in Figure 3.

Example 1  Assume that the edges and surfaces will be of type (a) as in Figure 3
with added white noise which is object-dependent. Then H, and H, become

H,: the readings in both N, and N, are independently taken from the same normal
distribution N(u,, o) With unknown p,, oo}

H,: the readings on N, are independently taken from normal distribution N(u,, o),
the readings on N, are taken from normal distribution N(u,, o), and (u,, o,) need not
be equal to (u,, o3).

To apply the maximum likelihood ratio principle we must find a maximum likelihood
estimate for (uy, o), (11, ), and (uy, o5} Gwven (x,, ... , x,) readings taken from a
normal distnibution with unknown (g, o), the maximum likehthood estimates for (u, o)
are (iu, ). When
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Assuming that (x,, ... , x,) are independently taken from normal distribution N(ix, &),
then the jomt probability density of generating the combined reading is the product of
the individual terms.
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Where H, holds we further assume that the readings on the two neighborhoods are
ndependent; this results in the joint probability density of P, and P, being the product of
P,- P, Hence the maximum likelihood ratio 1s P, - P,/ P,. Squaring this expression, which
saves computations of square roots, results in the following expression for the edge
value:

P3-PY/P§ = (@)™ /(o)™ (D",

Note that the edge value suggested is self-scaling with respect to noise and texture: In
areas where o, = g, = ¢,>> 0 (highly textured areas or the result of noisy hardware) the
edge value will be low, near 1, while any small steps 1n almost uniform areas will be
recognized early. In practice, we computed the variance of noise in the hardware by
sampling over time the same points 1n static scenes The computed variance 1s taken
always to be at least the hardware noise. Thus divisions by zero 1n pathological cases
were prevented.

At this point 1t may be worthwhile to compare our approach with that of [9]. Both try
to use a maximum hkelihood ratio to compute scores for an edge. But while we have a
simple model and a practical way of computing the confidence, [9] assumes a prior
determmistic classification of all possible idealized noise free structures into edges and no
edges Then, for a given reading structure the noise assumption is used to compute the
probability of all idealized structures that could have caused the readings These proba-
bilities are used to decide whether or not the readings represent an edge.

It should be mentioned that other statistical techmques, e.g. [4, 22], were used for
edge detection, but none of the edge detectors that appeared in the literature used the
maximum likelthood test for edge value

Example 2 Here we assume that each matrix point V(i, j) 1s a 3-D vector (x, y, 2).
Actually the raw readings are just distance R(i, j), but to avoid a strong dependency on
the sensor position. R(i, j) 1s transformed into (x, y, z). This 1s the form of input read from
such a device as radar, which measures distances to surfaces, or from devices that
measure the time of flight of light (laser) beams to an object. The i, j corresponds to
vertical and honizontal steps 1n the scanning angle. In that model two adjacent neighbor-
hoods on the matrix N, and N, have readings (x,, y,, z1), . - . , *n, Yn, 2Z») in N, and
(i, ¥i, 2D, . . ., (xh, yh, 25) in N,. We assume that objects are almost planar locally
with added white noise with mean 0 to position readings That is, if we read (x,, y,, z,),
. ov 5 (Xn, ¥a, z,) 1n a small neighborhood on an object we havea, b, ¢, d, o such thata® +
b»+c¢*=1andax, + by, + cz, +d + N0,a) =0, i=1,...,n.

With this assumption the edge detection decision will be a choice between Hy and H;:

H,* The readings 1n the two neighborhoods are taken from the same plane. That is, the
readings on both N, and N, satisfy for some (ay, bg, ¢y, do, 09) the equation agx + bgy +
coz +dy + N0, op) = 0, where a + b + ¢ = 1 for all (x, y, z) readings in N, and N,.

H,: There are two not necessarily equal planar fits for the readings on N, and on N,.
That is, there are (a;, by, ¢,,d,, o) for N, and (as, bs, ¢5, ds, 05) for N, such thata? + b2 +
cy=1;ai +bi+ct=1;ax, + by, +c,z,+d, + NO,a,)=0,i =1, ..., n;ax!
= byl + ¢zt +dy + NO,op) =0, 1=1, ..., m

To apply the Neyman-Pearson principle for this case we want to find maximum
likelihood estimates. Maximum likelihood estimates a,, b,, ¢,, d,; will be

Vi

n
2 (@, + by, + c1z, + dy)?

=1

I

n
min 2 {ax, + by, + cz, + d)* and o2 = V,/n.
a,b,c.d =1
a2+b2-:c'2=1
Solving for the optimal (a,, b,, ¢;, d,) 1s a relatively straightforward process. Once they
are found, the maximum hkelihood estimate for N, 1s
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P, = 1/N/Qa")-ote 2.
Hence we have the expression that tests for an edge the following way: If
Ve (Vi V) = K2,

decide for H,; otherwise decide for H,.

Note that (x, y, z) may be replaced by (i, J, g) 1n regular black and white pictures,
which case we have a regular picture edge operation that can handle edges of type (b) in
Figure 3. Somewhat similar applications have been reported [21 and 4] for detection of
gradient edges (Figure 3(b)) This edge operator has not yet been incorporated in our
system.

5. Neighborhood Selection

In the previous discussion on decision criteria, we deliberately omitted the question of
how to choose the test neighborhoods. This 1s another variant of the properties that we
want the edges to have. The edge value for a vertical edge between two horizontally
adjacent points 1s taken to be the strongest case for an edge computed on the four pairs
of neighborhoods (a)-(d) in Figure 4. Taking the maximum of the maximum hkelihood
ratio estimate for an edge among the four values computed for the four neighborhoods is
similar to the approach advocated in [6].

A completely symmetric configuration 1s used to measure the confidence value of a
horizontal edge unit between two vertically adjacent points. The choice of neighbors 1s of
an experimental nature, and it worked for our problems. Other problem-dependent
neighborhood choices are possible, and they will work for the specific edge structure in
mind, as shown by the examples in Figure 5. In choosing the size of a neighborhood a
reasonable balance between noise and size of object should be achieved. The bigger the
neighborhoods the less sensitive to noise the decision will be, but the small objects may
be lost.

At this point it is worthwhile to refer to the edge detector developed by Hueckel [13].
He found an elegant technique that can be used to compute the best fitting 2-D step
function.

d fa+bj=c

STEP, p,c,0.6(; ]) = e ifa+bj<c

is defined over a disk
DISK(o, jo, ¥) 2 { @) | @ — i + G — 10)* = 7},

which corresponds to an edge line at + by = ¢ where the brightness on one side is d and
on the other e. The step function is selected in an attempt to minimize the expression for
a given signal g(i, ) in the disk,

> (g6, j) — STEP,peue Gy )%

(2, )EDISK
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over all possible step functions. He took the parameters of a, b, ¢, d, e to be the
parameters of the “‘best possible” edge passing through the disk. The edge value was
then defined as | d — e | /DIS, which is a different measure than ours. An efficient
method of finding good approximation of those parameters was developed Smnce our
measure of edge strength is more complicated, 1t 1s unlikely that an elegant and simple
way of finding an optimal edge through a disk using our measure of edge strength is
achievable However, given a suggested edge structure, our approach can be used
immediately to provide a model driven confidence evaluation in the existence of the
suggested edge. For the suggested (a, b, c, d, ¢) edge parameter, let

No= 2 1, me=4d, oi= > (8G,)) — d)*/Ny;
ar+bi=c ar+by=c
(LNEDISK .NEDISK

N= 2 1, m=e o2= X @) - eP/Ny;
a+bi<c art+bi<e
(,)EDISK (1.)EDISK

No=Ni+ Ny, 3= 2 (80, 1) =~ wo*/No
.DEDISK

to = (No> o + Ny~ uy)/Ny + No,
Then

% M 5%
STRENGTH = (a’%) /(U?) (03) ,

which uses again the theoretical superior maximum hkehhood test.

6. Locking on a Detected Edge

The computed edge value 1s usually not sufficient to determine the location of the edges.
The values that are computed usually look like those in Figure 6

One way of forcing the edge to be well defined is to constrain it to be a local maximum
in addition to having a confidence value higher than a certain threshold. This is, of
course, extremely important for locking on the center of the edge (see [14, p. 382]).
Usually there is still some local ambiguity on the location of the edge, and for many
practical reasons 1t is better to treat the area around an edge as ambiguous. The source of
the problems here is that because of computing time constraints it is impossible to find a
global optimum for edge hnes using all available data, and 1t is necessary to use only local
mformation for evaluating the edge umts at this level. In our system the decision
concerming the exact location of the edge was left for the region grower described in
Section 7. Figure 7 illustrates the possible 2-D ambiguity.

The search for a maximum may be used for special purpose edge detection. For
instance, if we look only for one dark stripe crossing a white background, forcing the
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Fic 7 Region growing ambiguity example The (7, ) are pomnt numbers and the values are edge unit values
Clearly ponts (1, 1) (1, 2) (1. 3) (2, 1) (3, 1) should be 1n one region and (3, 2) (3. 3) (2. 3) in another, but
where (2, 2) should be 1s totally ambiguous (assuming that single point regions are not allowed)

edge to be the absolute maximum or mmimum on a horizontal hine in the image (keeping
track of the direction of the change) will supply the appropnate pair of edges on each of
the horizontal lines.

7 Region Growing

The application of an edge detector results in two new matrices in addition to the matrix
V(i, j) of raw data. The first is EV(i, j), which 1s the measure of the confidence that there
1s an edge unit between (i, y) and (1, j + 1); the second is EH(i, j), which measures the
confidence that there 1s an edge unit between (i, ) and (/ + 1, j). EV(J, j) and EH(i, j) may
include extra bits as determined by the direction of the change on that suggested edge
unit.

This output as 1t stands 1s not sufficient for application of pattern recognition and
various picture quantitative analysis tasks. Outlines of objects are needed to recognize
features One way of achieving these 1s to use a region grower that will outline objects by
clustering pomnts into regions This approach has been used for picture analysis [5, 2, 11,
24] The basic conclusion of these works is that without using semantic information,
which is the knowledge of the subject of the picture, clustering cannot create perfect
outlines. More recent work [8, p. 324, and 12] has introduced new techniques of
clustering that provide more flexibility and may upgrade clustering performance for
images.

Here we introduce a new algorithm for clustering based on a search for *‘valleys” of
edge values 1n a picture. If random access is allowed, a relatively simple algorithm that
starts and climbs from local minima of edge values can be implemented. Because of a
lack of storage capacity on our minicomputer, and 1n an attempt to use data as it 1s
sequentially digitized from the video signal, a one-pass algorithm to generate regions
corresponding to valleys was implemented. This 1s the first ime to our knowledge that
this approach has been used.
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Most works on region growing (ours included) lack the capacity to make use of the
shape of the growing object. An alternative approach to region growing is “edge
following” [17, 15, 10, and 3]. The basic idea 1n edge following 1s to detect a discontinu-
1ty, trace it, and in this way define edge lines. Unfortunately the work in edge following
lacks an effective way of tying region shape properties into their decision processes and
output.

Let us start by describing a one-pass algorithm that transforms the edge into data
structures of regions, boundaries, closed cracks, and open cracks, creating as by-
products two arrays, FH(i, j) and FV(i, j}), where FH(i, j) means that the program puts an
edge unit between (i — 1,j) and (i,j) and FV(i,j) means an edge unit between (i,j) and
(l’] - 1)~

To facilitate the description of the decision mechamsm for placing edges, we need to
define a few new terms. Let 7 > 0 be the edge confidence threshold; then:

(1) d 1s the distance between two adjacent grid points:

dli, j), (=1, ) &di —1,)), (i, M & Gf EH(i, j) < T then 0 else EH(i, j)).
i, j), G,j — DY 2 d((i,j — 1), (i, ) & (if EV(, j) = T then 0 else EV(i, j)).

(2) Reg(i, j)1s the region to which the point (i, j) belongs. (Reg(i, j) is not defined to all
points until the program is finished.)
3) Val(i,j) = Min d, j), (k, m)).
(t=ki+1y—mi=1
There 1s no edge unit between (i, j) and (k, m). This value will be + if (i, j) 1s the only
point in its region.
(4) Val(Reg,) = Min (Val (i, j)

(E)]
Reyiy,))=Reg,

(5) A point P will be the minimum point for its region if Val(P) = Val(Reg(P)).

The algorithm is designed so that at each state there is always a nondecreasing edge
distance value path from each mintmum of any region to any other point in the region
and the path enters that point from 1ts minimum direction.

That is, if P and Q are two points such that Reg(P) = Reg(Q) and Val(P) =

Val(Reg(P)), then there is a path (x,, x;, . . . , x,) such that
(a)'x]:Py Xp = Q;
(b) Reg(x) =Reg(P),i=1,...,n;

(c) x, adjacent to x4y, d(x,42, X,41) = d(x,41, X));
(d) d(xn’ xn—\) = Val(x,,).

We say that if such a path exists, Q is reachable from P. That is, two points are in the
same region 1f you can get from one to the other 1n a path that does not cross a ridge of
edge values.

8. Algorithm Description

The program scans the image line by line from left to nght The scanning 1s such that
when point (7, j) is processed, the program has already worked on all points (i;, j,) such
that (, <j}or (j = j, and i; < i) At each point one of the conditions 1n Figure 9 exists,
and the algorithm treats them as described in Figure 9 to grow the regions, boundaries,
and crack lines.

Assume the program 1s processing point (i, j).

Let D, be a Boolean varnable set to true if the program is not going to put an edge unit
between (i, j) and (1, j — 1) and set to false otherwise, and let D, be a Boolean variable set
to true if the program is not going to put an edge umt between (i, j) and (/ — 1, j) and set
to false otherwise. Let R, = Reg(i,j — 1) and R, = Reg(i — 1, ) (see Figure 8).

The decision on the values of D, and D, is described by the following Algol-like
program:
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Fic 8 Algonithm terms defimtion

begin
Boolean good-down,, bad-down,, up,, good-down,, bad-down,, up,,
good-down, < (d((1, )), (1,7 — 1)) < Val(,j — 1) N\ (Vals, j — 1) = Val(R,))),
Comment good-down, 1s true if point (1, ) is going to become a new mimimum for R, (the region above) and
it is adjacent to an old mmimum, hence any point of R, reachable from the old adjacent minimum will be
reachable from the new,
bad-down, < (d((1, ), (1, j — 1)) < Valg, j — 1)) A {(Vali, j — 1) > ValR))), .
Comment This variable 1s true if (1, ) 1s not reachable from all mimma of R, gong through (i, 7 — 1),
up, <~ d(t, ), G,y — 1)) = ValG,; ~ 1),
Comment This variable 1s true if point (1, j) 1s reachable from any minmimum of R, by continuing the path
that leads from that mimmum to (¢, 7 — 1),
good-down, « (d((t, 1), ¢ = 1,))) < Val@ — 1, )) N\ ((ValG - 1,)) < Val(R)));
Comment This vanable 1s true if point (¢, j) 1s going to be a new mimimum for R; (the region mimmum, to
the side) and 1s adjacent to an old minimum of R,, hence any point reachable from the adjacent old mimmum
will be reachable from (i, ),
bad-down, — (d((1, ), (1 — 1,)) < Val(t — 1, )) N\ (Val@ - 1, j) > Val(R,));
Comment This vanable 1s true if (/, j) 1s not reachable from all minima of R, through ¢t — 1, ),
up, < d@,)), ¢ — L) =Vvale - 1,)),
Comment This vanable s true if point (1, y) 1s reachable from any minima of R, by continuing the path that
leads from that minimum to @ — 1, ),
If good-down, N\ good-down, then D, « D, « true
else
If good-down, /\ good-down, them D, « D, « true
else
M good-down, /\ bad-down, then begin D, « frue,
D, <« false, end else if good-down, /\ up, then
begin
ifd(@, ), 6,7 = D) =deC,p, ¢ - 1,))
then D, « D, « true
else begin D, « true, D, < false, end,
end
else if bad-down, then begin if good-down, \/ up, then begin
D, « false,
D, < ftrue,
end
else begin
D, <« false,
D, < false, end;
end
else if up, /\ good-down, then begin
id, 0, 60— L) =d), G- 1)
then D, « D, <« true
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else begin D, « true, D, « false, end,

end

else if up, /\ up, then, if R, = R, then D, < D, < true else

ifd{(e, N, ¢t — 1, ) =dl(, ), 1,7 — 1)

then begin D, « true, D, < false, end

else begin D, «— false; D, « true; end

end

Comment In that case only one of D, and D, can be true, otherwise we cannot guarantee entrance through

a minimum value from all mimima of both R, and R,,
else if up, /\ bad-down, then begin D, < true, D, < false; end

Val(, j) « ;

if D, then begin

Val(i,j — 1) « Min(d((1, p), (1,5 — D)), Vali, j — 1));

Val(t, j) < d((e, j), G, § — 1),

Val(R,) <« Min(Val(R,), Val(i, ),

end,

If D, then begin

Valt — 1, p) < Min(d(G, j), ¢ — 1, ). Val(t — 1, j)),

Val(s, j) < Min(Vali, ), d((s, ), ¢t - 1, D)),

Val(Ry) «— Min(Val(R,), Val(,}1));

end,

if not (D, V D,) then Val(Reg(1, J)) « o,

The e, and e, (see Figure 8) may exist or not, and as a result there are four starting
conditions. The program may put D,, D,, D,, and D, or none of them, and hence there
are 16 cases in a point. (See Figure 9 for a brief description of the different cases.)

REGION‘ REGIONl
. .

REGLON] l . 0,
REGION2

START NEW REGION
(REGION ). PUT TWO EDGE

UNITS STARTING BOUND-
ARY LINE BETWEEN
REG\ON] AND REGlON2

REGION, REGION,
. .
REGION
.

(\PRY)

REGION
.

1 1

ADD (1, 1) TOREGION,

REGION, REGION,

L ] L ]

REGION O
hd REGION,

INITIATE AN OPEN
CRACK EDGE LINE START-
ING BETWEEN (1, ) (1, 1= 1)

INSIDE REGION,

REGION,  REGION,
L L]
REGION, l REGION,
P .

INITIATE AN OPEN CRACK
STARTING BETWEEN (¢, 1)
(= 1, 1) INSIDE REGION,

REGION| | REGION,
L ] L]
5
REGION
o ! ® (i)

MAKE b] AN OPEN CRACK.
MERGE REGION ; AND
REGIONZAND ADD (1, )
TO THE UNION

REGION,
.

bl

REGION2
.

[OPR)]

ADD (1, 1) TO REGION2

AND ADD TO BOUNDARY

LINE b] ANOTHER EDGE

UNIT BETWEEN {1, {} AND

Gi-1,9 4

REGION 1 |
.

REGION 1
o

REGION REGION
e 'l . 2

REGION, . (. )
L]
REGION,

ADD {i,j) TOREGION,.
EXTEND EDGE LINE by 8Y
EDGE UNIT BETWEEN (1,1)

tel®

REGION, REGION,,
[ |b‘ Y

REGION, | = by
Rl
IlEGlON3

CREATE NEW REGION3

CONTAINING ONLY (1, ().
CREATE TWO BOUNDARY
EDGE LINES b, AND b,

MAKE b) AN OPEN CRACK.
MERGE REGION | AND
REGION_ AND ADD (1, |)

ADD (1, |) TO REG'ONZ

AND ADD TO BOUNDARY
LINE b] ANOTHER EDGE

ADD {1, ) TOREGION
EXTEND EDGE LINE by BY

EDGE UNIT BETWEEN {1, )
-1,

2 3
REGION REGION REGION REGION REGION REGION REGION REGION
o 1 o ) o 1 o 1 o 1 o 1 o 1 o 1
by by by by
. ® (1,) 3 . . . . b2 L
REG!ON2 REGION2 REGION2 REG|0N2 REGlON‘ REGION2 REGION3

CREATE NEW D'(EGION3

CONTAINING ONLY (i1, j).
CREATE TWQ BOUNDARY
EDGE LINES by AND by

IF A # B, THEN MERGE A
AND BAND ADD (1, ;)

TO THE UNITIZED REGION.
COMBINE BOUNDARY
LINES b| AND b2

IF A =8, THEN COMBINE
BOUNDARY LINES b] AND

by AND MAKE by A

CLOSED CRACK IFA # 8
by IS CURRENTLY A

BOUNDARY

IF A =B, THEN COMBINE
BOUNDARY LINES b] AND

b2 AND MAKE b3 A

CLOSED CRACK IFA # B
b3 1S CURRENITLY A

BOUNDARY

TO THE UNION tJ_l‘,”TI)BETWEEN {1, 1I)AND
REGION] REG|ONA REGlONl REG|ONA REGiON] REG'ONB ﬁEGION, b REG'ONZ
b ® b ) b ® |b] . b ® b 3 b ® 2 e
2 1 2 by 1 2 1 b4
REGIONB
.
. o1, )) . . [ . 0
REGIONB REGIONB REG|ONB REGION, REG|0N3 b3 REGION4

START NEW REGION,
REGION 4 AND TWO

BOUNDARY LINES by
AND b,

Fic 9

The different region growing decisions
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D,
0,
D,[Py

CRACK

THE 3 OPTIONS TO EXTEND AN OPEN CRACK AND THE
CORRESPONDING ASSUMPTION ON DISTRIBUTING

Fic 10 The three options to extend an open crack and the corresponding assumption on distributing

Merging of two regions may always result 1n transformation into a crack of a previously
common boundary of the two regions. In general each operation of the region grower is
fairly elaborate. The data structure used is not described in this paper, but it is essentially
the same data structure described in [24] with slight modification to include edge line
representation through chain encoding.

This one-pass algorithm is local and requires relatively small core resident data.
However 1t does not create maximal regions with respect to directionality of the region
growing. On the other hand, 1t is relatively simple and fast when other algorithms are
considered. The maximality problem may be easily corrected if backup is allowed. Note
also that the threshold T plays a very small role in defining the output of the algorithm.

9. Simplification of the Result of Basic Region Growing

There are two straightforward options for simplifying the output of the one-pass region
grower: (1) take all regions that are too small to be interesting and melt them into their
closest neighbor (the distance between two regions will be defined later in the paper); (2)
take all short cracks that are weak (strength of the edge line will be defined later) and
delete them. Of course the threshold below which a crack is weak and a region is small is
a function of how much we want to elaborate the task of the image analysis and is defined
heuristically. In fact, in the current implementation all cracks are deleted since the edge
operator is sensitive enough for our purposes.

Fic. 11  Ongmal
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Fic. 12. Region growing based on proposed region grower (Section 7) using the edge evaluation of Section
3 with default thresholds

Fic 13. Reconstruction of the picture from the information contamed 1 the regions of Figure 12

10. Growing Open Cracks Into Closed Cracks

At the present time we just obtain the cracks within regions and mark them as such. In
the future one may look for ways of closing them to define finer regions. One possible
way of closing open cracks is to grow them in length from their open end until the
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Fic. 14 Melting regions from Figure 12 using default threshold on second pass

Fic. 15 Growing regions with the only constraint that maximum range of gray level i a region 1s less than
20 (20 selected as best for that image)

extended edge line meets already existing edge lines and closes. On the open end in each
step there are three choices of where to extend the edge line: go straight ahead, turn left,
or turn right. The decision as to which direction to take will minimize the cost of closing
the open crack, where the cost is defined heuristically. One possible choice is as follows:

Given the original crack, define two distributions that describe the properties on either
side of the crack, Pp, and Pp,. The cost of adding an edge unit will be the maximum
likelihoaod ratio between the two assumptions:

H,: the two sides of the edge unit belong to the same side of the crack (the best choice
between D, on both sides of the extension and D, on both sides);

H,: there is a different distribution on either side chosen according to geometrical
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£ LEENS
1

Fic 16 Region growing using IZ’,;, (X, — Y1) as the edge value with the proposed one pass region grower
Threshold which was selected manually as optional to that picture was set to 5-n

Fic 17 Ongmal

constraint (Figure 10).

Cost = Py /Py,.

Note that since the cost function is additive it can be used in conjuction with the
shortest path algorithm [16, Ch. 3] to find the nearest (least expensive) path to a closing
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Fic 18 Region growing default parameters (hke Figure 12)

Fic 19 Reconstruction of Figure 18

edge unit. Reference (16] describes an application of the shortest path algorithm to edge
extension under simpler constramnts. This technique is immediately applicable to our
different cost function and the different termination condition on the path.
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Fic 21 Region growmng with edge values set to E:l_, (X, — Y,) with threshold set to 8-n
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Fic 22. Region growing so that maximum range of gray levels within a region 1s less than 25

11. Breaking a Region Into Two Around a Crack

An alternative approach to breaking a region into two regions to make the crack into a
part of a boundary 1s to use special purpose region growing. Assume that there is a crack
in a regular gray level picture (V(i, j) € R,) with readings with mean g, and variance o3
on a small neighborhood on one side of the crack and mean g, and variance o on the
other side. Assume that the crack is inside region R; then we can break the points in R
into two classes, C, and C,:

Cl é {(l) ])

Then we would expect C, to be on the first side of the crack and C, on the second side
of the crack. Unfortunately it may turn out that C, or C; is not pathwise connected. As a
result one of the connected components that border on the crack should be picked out. A
more heuristic approach is to grow a region around each of the two sides of the crack,
and to stop when a new point has a neighborhood that is more likely to belong to the
other side. Then take the smaller of the two regions resulting and make it C,; then C, will
beC, =R - C,.

This algorithm can be used also to allow flexible human intersection in analyzing the
scene. This can be done by allowing the operator to use cursor sample points of the two
subregions of a region. The machine then defines the separating features of the two
subregions and carries out the sequentation. [12] and [23] describe systems that auto-
matically select the distinguishing features of subregions of a given region. The local
structure around a crack provides the distinguishing features of the two sides, and
implementing an automatic system for doing that should be relatively easy. Currently
this option is not used in our system, but descending from down region to subregion is of
great potential value.

er‘)_-o-—. e~ iva.p~udior < (1 /\/(27,).0.2). e—}(l’(u)—ug)lqz} » Cy AR~ C,.
1
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12. Merging Regions

This basic region grower utilizes local detection procedures. Better decisions are achiev-
able (at least theoretically) by using more global information. The problem is how to use
this additional information and still keep the program lean and fast. Research in this area
has been reported [24] Our basic approach is to be oversensitive on the local pass and as
a result to oversegment the picture. But then we take the output data (which is simple
relative to the original picture) and simplhfy it We take pairs of regions with common
boundaries and merge them into one To do that rehably, a confidence value that
measures the confidence that the pair of regions are different is computed. Then we
iteratively select the pair of regions with the lowest confidence of being different in the
current structure, merge them, and update the structure. The confidence is dependent on
two factors: (1) edge line strength (on the common boundary of the two regions), and (2)
the difference of the properties inside the two regions. Both of these values are
computed on the basis of assumptions similar to those used in the edge confidence
evaluation. For instance, if we assume gray level readings and let x;, i = 1,n, be the

readings on one region and x;, i = 1,m, be the readings at the other, then the second
factor is

CONFIDENCE = Vyptn/ve- v,

where

W w= (Sx+ Sx)/(mm, @ vi= (2= wr)m
@ V= (S -+ L@ - w) o+, 0w = (Ex)/m,

® w=(Zx)m © V= (200 - wr)/m

Results using only this factor are shown below. In [24] the local boundary properties are
used to compute the edge values. The merging is stopped when the weakest boundary
strength 1s more than a given threshold

13. Results

The suggested one-pass region growing algorithm driven by edge values was imple-
mented on the General Automation SPC-16/75 minicomputer of the JPL robotics lab.
The mnput picture is digitized into 256 gray levels from the black and white video signal of
a Cohu camera. The noise variance 1s 2, measured from repetitious readings of the same
point in a sequence of images. A Ramtek display unit 1s interfaced with the minicompu-
ter and is used to display the digitized picture in green. Boundary lines of regions are
displayed in red over the original picture for performance evaluation.

All cracks are currently ignored. The threshold below which the edge value 1s
truncated to 0 was fixed at 2000 1n all the examples below. A system to set the threshold
automatically to allow only 5 percent of the points of the image to have value over the
threshold was scrapped in favor of an absolutely fixed threshold.

The output of the first pass is then passed to a region merger that reduces the number
of regions also with a default fixed threshold (merge till log (confidence) is greater than
or equal to 20). The compute time for a 200X200-pixel picture is approximately a
minute for a program that 1s highly inefficient because of debugging aids.

The results shown in Figures 11-22 are encouraging. We believe that the use of planar
fits (the gradient edge detector instead of the step edge detector) and the dynamic use of
region features as they grow to upgrade performance of the region grower will result in
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even better performance. We found the region growing algorithm an important tool in
scene analysis [25], and look forward to improving its performance.

Comparison of performance of the suggested region growing approach with two others
is given. The first alternative is the one-pass region growing described 1n Section 7, i.e.
the use of algorithms that grow regions so that the difference between the maximum gray
level reading and the minimum gray level reading in a region is less than a predefined
threshold. The second alternative uses the same region growing where the edge value is
takentobe | %, (X, — Y,) |, where X, are the readings from one neighborhood and ¥,
are those from the other. The neighborhoods are identical to those of the proposed edge
operator. In the best case the two alternatives performed similarly to the proposed
region grower. However, the threshold setting had to be adjusted manually between
pictures until the performance became comparable to the proposed (adaptive) edge
detector.
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