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1. Introduction 

A substantial amount of research has been done in developing techniques for locating 
objects of interest automatically in digitized ptctures Drawing the boundaries around 
objects ts essential for pattern recognition, object tracking, image enhancement,  data 
reduction, and various other apphcations. References [18-20] constitute a good survey 
of research and applications in image processing and picture analysis. 

Most researchers of picture analysts have assumed that (1) the image of an object ts 
more or less uniform or smooth in its local properties (that is, illumination, color, and 
local texture are smoothly changing inside the tmage of an obJeCt); and (2) there ts 
detectable dlscontinutty in local properties between images of two different objects. We 
will adopt these two assumptions in thts paper and assume no textural image (see [1] for 
an example of texture tmage analysis that does not make these assumptions). 

The work on automattc location of objects in diglttzed images has split into two 
approaches: edge detection and edge foiiowmg versus region growing. Edge detection 
applies local independent operators over the picture to detect edges and then uses 
algorithms to trace the boundartes by following the local edge detected A recent survey 
of literature in this area is given in [7]. The region growing approach uses various 
clustering algorithms to grow regions of almost uniform local properties tn the image (see 
[5, 2, 11, 24] for typical apphcations) More detaded references will be gwen later 

In this paper the two approaches are combined to complement each other; the result is 
a more powerful mechanism to segment pictures into objects. We developed a new edge 
detector and combined tt with new region growing techniques to locate objects; in so 
doing we resolved the confusion tn regular edge following that results where more than 
one isolated object on a uniform background is in the scene (see [17]). 

This report describes the foilowmg contributions: (1) a new and "optimal" (given 
certam assumptions) edge detector; (2) a simple one-pass region growing algorithm that 
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is implemented on a minicomputer, utilizing the edge detector output; (3) the applica- 
tion of  path generator algorithms and "shortest path" algorithms for boundary following 
to close open-edge lines into boundaries around regions; (4) special purpose region 
growing intended to close open edges (cracks); and (5) a special clustering algorithm that 
simplifies the region structure resulting from the application of ( l )  through (4) 

2. Definition o f  Terms 
The input is expected to be in the matrix form V(i,j),  i = 1 . . . . .  N,  j = 1 . . . . .  M, 
where V is a vector in R" and n is a function of  the sensory system, usually 1 (gray level 
picture), 3 (color or x, y, z coordinates of  the surface in the scanning direction), or 6 
(color and 3-D information). An  edge unit separates two adjacent matrix points; that is, 
an edge unit is between (i,/) and (i + 1,]) or  between (i ,j)  and (i,] + 1) for some i , j  (see 
Figure 1). 

An edge unit is usually adjacent on both ends to other edge umts. There are 64 
combinations of edge units continuing an edge unit, since each of the edge umts el, ez, e:3, 
e], el, e~ in Figure 1 may or may not exist. 

Two points on the grid (I, J)  and (K, L) are said to be in the same region if there is a 
path sequence (i~,j~) . . . . .  (i , , jn) such that i~ = I , j~  = J, i ,  = K, and./,  = L, where 
(im,jra) is adjacent to (im+~,./m+l) fo rm = 1 , . . .  , n - 1 and there is no edge unit between 
the two. A region will be a maximum set of points satisfying that property. 

An edge line (or an edge) between region R~ and region R2 is the maximal sequence of 
adjacent edge units such that each edge unit in the sequence is between two matrix 
points, one belonging to R~ and the other belonging to R2 It is possible that an edge line 
is inside a region (Ri = R2). 

An edge line that is between two different regmons is called a boundary. An edge hne 
that is inside a region is called a crack. An open crack is a crack in which at least one end 
terminates without connecting to any edge line. A closed crack is one in which each end 
terminates on another edge line For instance cracks appear when an object ms smoothly 
disappearing into the background on one side and has detectable discontinuity on the 
other side, as shown m Figure 2. 

Using the above definitions, this report first presents an edge detector that detects 
edge units m parallel locally on the whole image. Then a region grower that groups 
matrix points into regions and edge units into boundaries and cracks is presented. A local 
region grower that tries to break a region with a crack in it into two regions for which the 
crack is part of the common boundary is presented next Alternatively, an open crack 
extending algorithm is suggested to connect the open edge unit of  the crack to another 
edge line. 

3. The Local Edge Detector 

The edge operator ms a detector of local dmscontmuity m an image When applied between 
two adjacent pomts such as (i,j) and (i + I , j ) ,  it should return a value that will measure 
the confidence that there is an edge between (i,j) and (i + J,j). Smce we work wroth noisy 
input to achieve reliability, the operator  must look at two 2-dmmensmonal (2-D) nemghbor- 
hoods Ni and N2 to obtain a rehable value Neighborhood N~ includes (i, j) and a few 
adjacent pomts; N2 includes (i + l , j )  and a few adjacent points; andN~ r'l N2 = 0. As a 

" " " " ~ 1 0 , j )  ~a 

e 2 

FIG 1 Edge unit structure 
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result the value returned will measure the confidence that the neighborhoods belong to 
images of different objects 

Edge detection is actually composed of three components: (1) measuring differences 
between image structures in the two neighborhoods, (2) selecting the proper neighbor- 
hoods; and (3) locking on the exact position of the edge. Discussion of each of these 
steps follows. 

4. Measuring Differences in Structure Between Two Neighborhoods 

Any techniques that measure structural differences must make some assumptions (ex- 
plicitly or implicitly) concerning the structure of an edge and the area reside a region. 
Bmford and Hershkovltz [4] suggest three possible ideal edges defined by the intensity 
profile on a normal-to-the-edge line (Figure 3). 

All of these ~dealized edges are in reality washed with Gaussian noise on both sides, 
where the noise is both hardware noise and the result of surface irregularities. Basically, 
the dects~on ts between two hypotheses: 

H0: the readings m Ni and Nz are taken from the same object; 
Hj: the readings in N~ and N2 are taken from different objects 

Neighborhoods N~ and N2 are the neighborhoods mentioned m Section 3, and the 
decision as to how to choose them will be described in Section 5. 

An optimal (best for its size) decision between H0 and H~ will utihze the maximum 

REGION 0 

REGION 1 

OPEN CRACK 4 

OPEN CRACK I 

LI 
CRACK 2 
(OPEN) 

BOUNDARY 4 

CRACK 3 
(.CLOSED) 

BOUNDARY 3 

REGION 3 

BOUNDARY 5 

BOUNDARY 8 

REGION 4 

Fio 2 Illustration of terms 

READING A4"7"- E DGE / f .~  EDGE POINTS yPO,N,s "AO,NGSlJ 
(a) (6) L 

DISTANCE, NORMAL TO EDGE DISTANCE, NORMAL TO EDGE 

READINGS I ~ E D G E  AREA 
(c) [ 

DISTANCE, NORMAL TO EDGE 

FIG 3 Typical edges (a) ideahzed step edge (dominant edge type in visual images), (b) pure gradient edge 
(corners are espeoally frequent m analysis of 3-D images when direct measure of d~stance is available), (c) 

spike edge (appears frequently m corner edges m visual images) 
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likelihood ratio as follows: Let Po be the maximum likelihood estimate of the structure 
(reading in N~ and Nz), given that H0 is true, and let Pi be the maximum likelihood 
estimate of the structure, assuming that H~ is true. Then choose H~ when PffPo > 
K, choose H0 when PffPo < K,  and choose at random when PffPo -- K. 

This decision will be optimal for a g;ven allowed probability of false negative (see the 
Neyman-Pearson Test [8, p. 55]); hence if the structure assumptions are valid we have 
an ideal edge detector, given only readings in Nj and N2. (We deal with Gaussian 
probabilities; hence we ignore PffPo = K.)  The conclusion is that PffPo is the best 
measure of the edge strength. Following are two examples of applying these principles to 
the edges of types (a) and (b) in Figure 3. 

Example 1 Assume that the edges and surfaces will be of type (a) as in Figure 3 
with added white noise which is oblect-dependent.  Then Ho and H~ become 

H0: the readings in both N~ and N2 are independently taken from the same normal 
distribution N(~o, ¢r0) with unknown ~0, o'0; 

H~: the readings on N~ are independently taken from normal distribution N(/.,~, orb), 
the readings on N~ are taken from normal distribution N(~2, o'2), and (/zt, cry) need not 
be equal to (/z~, o-2). 

To apply the maximum hkehhood ratio principle we must find a maximum likelihood 
estimate for (/Zo, o'o), (gj ,  o'1), and (~2, o-2) Given (x~ . . . . .  x,) readings taken from a 
normal distribution with unknown (/.~, o'), the maximum likelihood estimates for (~,  or) 
are (/x, 6"). When 

I 1 
~ : - 2 x I  and 6 - z = - ~ ( x , - . )  2, 

]ff t = l  ,n i = !  

the probabihty density that a reading x, is generated by N(#,  6") is 

- ( x , -  ~)~ / 2~r ~ 
( 1/x/(Z~r)or)" e 

Assuming that (x~ . . . . .  x,,) are independently taken from normal distribution N(/2, 6"), 
then the joint probabihty denstty of generating the combined reading ts the product of  
the ind~wdual terms. 

P m a x  = P ( ~ , & )  ( x ,  . . . . .  x n) 

R 

= [l/(x/(2~r)&)n]e-./zv),.X (~,-~)~ 

= [l/x/(21r)" or"]e . . . .  '~2 

= ( 1/21r.) • o./z • (1/or"). 

Hence if the readings on N1 are (x~ . . . . .  xm) and on N2 (y~ . . . . .  y . ) ,  then on N~, 

cr] = 1 ~ ( x , -  t~,) 2, P1 = (l/(2~r)"/~)'e -mr2" 1/ori"; 
m ~=l 

12 
t.61 = - -  X~, 

m ,=i 

on N~, 

'2 g~ = --  y,, 
m t = l  

1 
~l ~=1 

and on Nj combined with N2, 

#o = (ml~j + n~.,/(m + n), 
o-g = [mor~ + n'o'~2 + m(/-to - g,)2 + n(go - g~,,)2]/(m + n), 

1 
Po = e ( - '+">/2" l /or8'+"" 

(2~-)"+',)/2 

P2 = (ll(2~')nlZ)'e-"1z'I/o'~; 
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Where H~ holds we further assume that the readings on the two neighborhoods are 
independent;  this results m the joint probabihty density of P~ and Pe being the product of 
Pm" P2 Hence the maximum likehhood ratio is P~ • PJPo.  Squaring this expression, which 
saves computations of square roots, results m the following expression for the edge 
value: 

e~.P~Ieo~ = ( o - , ~ ) , , + - / ( o - ~ , ) , , , . ( o I ) , .  

Note that the edge value suggested ~s self-scahng with respect to noise and texture: In 
areas where oh ~ ~r~ ~ ~r0>>0 (highly textured areas or the result of noisy hardware) the 
edge value will be low. near 1, whde any small steps m almost uniform areas will be 
recognized early. In practice, we computed the variance of noise in the hardware by 
samphng over time the same points m static scenes The computed variance as taken 
always to be at least the hardware no~se. Thus dlwsions by zero m pathologacal cases 
were prevented. 

At this point it may be worthwhile to compare our approach with thai of [9]. Both try 
to use a maximum likelihood ratio to compute scores for an edge. But whale we have a 
simple model and a practical way of computing the confidence, [9] assumes a priori 
deterministic classlficahon of all possible ideahzed noise free structures into edges and no 
edges Then,  for a gwen reading structure the noise assumptaon as used to compute the 
probabdity of all idealized structures that could have caused the readings These proba- 
bihtles are used to decide whether or not the readings represent an edge. 

It should be mentioned that other statistical techniques, e.g. [4, 22], were used for 
edge detechon, but none of the edge detectors that appeared in the literature used the 
maximum hkehhood lest for edge value 

Example  2 Here we assume that each matrix point V(i. j) is a 3-D vector (x, y, z). 
Actually the raw readings are just distance R(i, j ) ,  but to avoid a strong dependency on 
the sensor position. R( i , j )  is transformed into (x, y, z). This is the form of input read from 
such a device as radar, which measures distances to surfaces, or from devices that 
measure the time of flight of light (laser) beams to an object. The i, j corresponds to 
vertical and horizontal steps m the scanning angle. In that model two adjacent neighbor- 

hoods on the matrix Na and N2 have readings (x,, y~, Zl) . . . . .  (xn, yn, z,) in N1 and 
(x~, y~, z~) . . . . .  (x~, y~, zl~) in N2. We assume that objects are almost planar locally 
with added white noise with mean 0 to posataon readings That is, if we read (x~, y~, z~), 
. . . .  (x,,, y,,, z,) m a small neaghborhood on an object we have a, b, c, d, cr such tha ta  2 + 
b 2 + c  2 = 1 andax,  + by, + cz, + d +  N(O,o-) = O, i =  1 . . . . .  n. 

Wtth thas assumption the edge detection decision will be a choice between H0 and H~: 
H0' The readings in the two neighborhoods are taken from the same plane. That is, the 

readings on both N~ and N2 satisfy for some (a0, b0, Co, do, o-0) the equation a0x + boy + 
CoZ + do + N(0, O'o) = 0, where a02 + b~ + Co 2 = 1 for all (x, y, z) readings in N1 and N2. 

H~: There are two not necessaraly equal planar fits for the readings on N1 and on Nz. 
That is, there are (a~, b~, c~, d~, 0"~) for N~ and (a2, b2, c2, d2, o'z) for N2 such that a~ 2 + b~ 2 + 
c~ = 1;a~ +b~z +c~ = 1;a~x, + b a y ,  + c l z ,  +d~ + N(0, 0-~) = 0, i = 1 . . . . .  n;a2x~ 
= bzv~ + c2z, 1+  d2 + N(O, o'2) = O, : = 1 . . . .  , m 

To apply the Neyman-Pearson principle for th~s case we want to find maxamum 
likelihood estimates. Maximum likehhood estimates a~, b~, c~, d~ will be 

V 1 = ~ (alx~ -Jr bty  ~ + c~z, + d~) 2 

= rain ~ ( a x , + b y , + c z ,  + d )  2 and o a = V~/n.  
a,b,c,d i ~ 1  

a~+b2+c2=l 

Solving for the optimal (a~, b l, c~, d~) ms a relatively straightforward process. Once they 
are found, the maximum hkelihood estimate for N~ ~s 
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(a) EDGE TYPE °ke (b) EDGE TYPE c,/e/ /~,/~ 
(REGULAR EDGE) (LINE) 

(d) EDGE TYPE 
(T CORNER) 

Fm 4 Typical neighborhoods for edge detection 

(c) EDGE TYPE ~ "  
(T CORNER) 

Pi = 1/k/(2~rn)'o'~ "e-nl2" 

Hence we have the expression that tests for an edge the following way: If 

W + " / ( V ~  W )  -> ~ ,  

decide for H~; otherwise decide for H0. 
Note that (x, y, z) may be replaced by 0, I, g) m regular black and white pictures, m 

which case we have a regular picture edge operation that can handle edges of type (b) in 
Figure 3. Somewhat similar applications have been reported [21 and 4] for detection of 
gradient edges (Figure 3(b)) This edge operator has not yet been incorporated in our 
system. 

5. Ne ighborhood  Selection 

In the previous dtscussion on deoston criteria, we dehberately omitted the question of 
how to choose the test neighborhoods. This is another variant of the properties that we 
want the edges to have. The edge value for a vertical edge between two horizontally 
adjacent points ~s taken to be the strongest case for an edge computed on the four pairs 
of neighborhoods (a)-(d) in Figure 4. Taking the maximum of the maximum hkehhood 
ratio estimate for an edge among the four values computed for the four neighborhoods is 
similar to the approach advocated in [6]. 

A completely symmetric configuration is used to measure the confidence value of a 
horizontal edge umt between two vertically adjacent points. The choice of neighbors is of 
an experimental nature, and it worked for our problems. Other problem-dependent 
neighborhood choices are possible, and they will work for the speoflc edge structure in 
mind, as shown by the examples in Figure 5. In choosing the size of a neighborhood a 
reasonable balance between noise and size of object should be achieved. The bigger the 
neighborhoods the less sensitive to noise the deosion will be, but the small objects may 
be lost. 

At  this point it is worthwhile to refer to the edge detector developed by Hueckel [13]. 
He found an elegant technique that can be used to compute the best fitting 2-D step 
function. ( 

= ] d  e If at + bj -> c S T E  Pa.b.c,a,e(t, I) [ if at + bj  < c 

is defined over a disk 

OlSK(io,  jo, 3') ~ { (i, ]) [ (t - i0) 2 + q - 10) ~ <- Y}, 

which corresponds to an edge line at + b! = c where the brightness on one rode is d and 
on the other e. The step function is selected in an attempt to minimize the expression for 
a gwen signal g(i, 1) in the disk, 

(g(i,  j )  - STEPa,b,c,a, e (i, ]))2, 
(t, ~)~DISK 
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GENERAL EDGE ORIENTATION 
DETECTOR IN DISK COM- 
PUTED FOR FINDING OPTIMAL 
ORIENTATIONS, DEPENDING 
ON THE DESIRED ANGULAR 
RESOLUT ION 

FIG 5 

CORNER DETECTOR, 
or' AND o" TAKEN 

TO BE TYPICAL 
ANGULAR RESOLUTIONS 

T CORNER DETECTOR 

Extended neighborhoods set 
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over all possible step functions. He took the parameters  of a ,  b, c, d,  e to be the 
parameters  of the "best  possible" edge passing through the disk. The edge value was 
then defined as J d - e I / D I S ,  which is a different measure than ours. An efficient 
method of finding good approximation of those parameters  was developed Since our 
measure of edge strength is more complicated,  ~t ~s unhkely that an elegant  and simple 
way of finding an opt,mal edge through a disk using our measure of edge strength is 
achmvable However ,  given a suggested edge structure, our approach can be used 
immediately to provide a model driven confidence evaluatmn m the existence of the 
suggested edge. For the suggested (a, b, c, d, e) edge parameter ,  let 

N2 = ~ l ,  ~z = a,  o-~ = ~ (g ( i , j )  - d)2/N2; 
a~+bj->c m+bj~c 

f z,J)~DISK (t J)EDISK 

Nx = ~ 1, tzl = e ,  cr~ = ~ (g(l ,])  - e)~/N,;  
a~+bJ<c a~+b3<c 

(Io)~DISK (~,J)EDISK 

No = N,  + N2, o'~ = ~ (g( t , l )  - Zo)~/No. 
(t,j}~DISK 

/-to = (N2"/./.2 + N~. p1)/N~ + N 2 ,  

Then 

which uses again the theoretical superior  maximum likel ihood test. 

6. Lock ing  on a Detected Edge 

The computed edge value ~s usually not sufficient to determine the location of the edges.  
The values that are computed usually look like those in Figure 6 

One way of forcing the edge to be well defined is to constrain it to be a local maximum 
in addition to having a confidence value higher than a certain threshold. This is, of 
course, extremely important  for locking on the center of the edge (see [14, p. 382]). 
Usually there is still some local ambiguity on the location of the edge, and for many 
practical reasons tt is bet ter  to treat  the area around an edge as ambiguous. The source of 
the problems here is that because of computing time constraints it is impossible to find a 
global optimum for edge lines using all available data,  and it is necessary to use only local 
information for evaluatmg the edge units at this level. In our system the decision 
concerning the exact location of the edge was left for the region grower described m 
Sectmn 7. Figure 7 illustrates the possible 2-D ambiguity. 

The search for a maximum may be used for special purpose edge detection.  For  
instance, if we look only for one dark stripe crossing a white background,  forcing the 
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EDGE THRESHOLD fw L '~ 
t S ~ READINGS 

EDGE VALUE s. I r 
D_~= . -  ,''~' READINGS * 

DISTANCE NORMAL TO EDGE 

FlG 6 An ~deai edge value cross section 

(1, 1) 

1.0 

( I ,  2) 

1,0 

(I ,  3) 

I • ] (3, I) 
(2, I) • 

1.0 1.0 
1000 2000 

2000 (2, 2) !000 (3, 2) 

I 
2000 I 1.0 

2000 (2, 3) ] 13e3) 
J • 1.0 

FIG 7 Regton growing ambngmty example The (t,/) are pomt numbers and the values are edge umt values 
Clearly points (1, l) (1, 2) (1,3) (2, 1) (3, 1) should be m one regnon and (3, 2) (3, 3) (2.3) m another, but 

where (2, 2) should be is totally ambtguous (assuming that single point regions are not allowed) 

edge to be the absolute maximum or minimum on a horizontal line in the image (keeping 
track of the direction of the change) wdl supply the appropriate pair of edges on each of 
the horizontal lines. 

7 Region Growmg 

The application of an edge detector results In two new matrices in addmon to the matrix 
V(i,j) of raw data. The first is EV(i,j), which is the measure of the confidence that there 
is an edge umt between (i,j) and ( t , j  + 1); the second is EH(i,j),  which measures the 
confidence that there ns an edge unit between (i,j) and (i + l,j).  EV(i,j) and EH(i,j) may 
include extra bits as determined by the direction of the change on that suggested edge 
unit. 

This output as it stands is not sufficient for application of pattern recognition and 
various picture quantitative analysis tasks. Outlines of objects are needed to recognize 
features One way of achieving these is to use a region grower that will outline objects by 
clustering points into regions This approach has been used for picture analysns [5, 2, 11, 
24] The basic conclusion of these works is that without using semantic reformation, 
which is the knowledge of the subject of the picture, clustering cannot create perfect 
outlines. More recent work [8, p. 324, and 12] has introduced new techniques of 
clustering that provide more flexibility and may upgrade clustering performance for 
images. 

Here we introduce a new algorithm for clustering based on a search for "valleys" of 
edge values m a picture. If random access is allowed, a relatively snmple algorithm that 
starts and climbs from local minima of edge values can be implemented.  Because of a 
lack of storage capacity on our mimcomputer,  and m an attempt to use data as it is 
sequentnally digmzed from the vndeo signal, a one-pass algorithm to generate regions 
corresponding to valleys was implemented.  This is the first tnme to our knowledge that 
this approach has been used. 
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Most works on region growing (ours included) lack the capacity to make use of the 
shape of the growing object .  An alternative approach to region growing is "edge 
following" [17, 15, 10, and 3]. The basic idea in edge following Is to detect  a discontinu- 
ity, trace it, and in this way define edge lines. Unfortunately the work in edge following 
lacks an effective way of tying region shape propert ies  into their decision processes and 
output.  

Let us start by describing a one-pass algorithm that  transforms the edge into data  
structures of regions, boundaries ,  closed cracks, and open cracks, creating as by- 
products two arrays,  F H ( i , j )  and F V ( i , j ) ,  where F H ( i , j )  means that the program puts an 
edge unit between (i - 1,]) and ( i , j )  and F V ( i , j )  means an edge unit between ( i , j )  and 
(i, j - 1). 

To facilitate the description of the decision mechanism for placing edges,  we need to 
define a few new terms. Let T > 0 be the edge confidence threshold; then: 

(1) d is the distance between two adjacent  grid points: 

d((i, j ) ,  (i - 1, j)) a= d((i - 1, j ) ,  (i, j)) a= (if EH(i ,  j )  < T then 0 else EH(i ,  j)) .  

d((i, j ) ,  (i, j - 1)) ~ d((i, j - 1), (i, j))  ~ (if EV(i ,  j )  ~- T then 0 else EV(i ,  j)).  

(2) Reg( i , j )  is the region to which the point ( i , j )  belongs. (Reg(i , j )  is not defined to all 
points until the program is finished.) 

(3) Val(i, j )  = Min d((i, j ) ,  (k, m)). 
I ~ - k l + D - m l = l  

There is no edge unit between ( i , j )  and (k, m). This value will be +oo if ( i , j )  is the only 
point in its region. 

(4) Vat(Reg,) = Min (Vat ( i , j ) )  
( l ,J)  

Retl(l,3 I=Re• 1 

(5) A point P will be the minimum point for its region if Val(P) = Val(Reg(P)).  
The algorithm is designed so that at each state there is always a nondecreasmg edge 

distance value path from each minimum of any region to any other  point in the region 
and the path enters that point from its minimum direction. 

That is, if P and Q are two points such that Reg(P)  = Reg(Q)  and Val(P) = 
V a l ( R e g ( P ) ) ,  then there is a path (xl ,  xz . . . .  , xn) such that 

(a) x, = P,  x,, = Q; 
(b) Reg(x , )  = Reg (P), i =  1 . . . . .  n; 
(c) x, adjacent  to x,+l, d(x,+2, x,+,) > d(x,+,, x,); 
(d) d(x , ,  x ,_t)  = Vat(x,).  

We say that if such a path exists, Q is reachable from P. That is, two points are in the 
same region if you can get from one to the other in a path that does not cross a ridge of 
edge values. 

8. Algor i thm Description 

The program scans the image line by line from left to right The scanning is such that 
when point (i, j )  is processed, the program has already worked on all points (il, j l )  such 
that (/1 < J) or (j = j l  and il < i) At  each point one of the conditions in Figure 9 exists, 
and the algorithm treats them as described in Figure 9 to grow the regions, boundaries ,  
and crack lines. 

Assume the program is processing point (i, j) .  
Let D~ be a Boolean variable set to true if the program is not going to put an edge unit 

between (i , j)  and ( t , j  - 1) and set to false otherwise, and let D2 be a Boolean variable set 
to true if the program is not going to put an edge unit between ( i , j )  and (i - l , j )  and set 
to false otherwise.  Let R~ = Reg(i,  j - 1) and R2 = Reg(i  - 1, j )  (see Figure 8). 

The decision on the values of D~ and Dz is described by the following Algol-l ike 
program: 
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( i -  1, i ) "  

R 2 

FIG 8 

• ( i ,  i) 

D21 
Algori thm terms de fmmon 

b e g i n  

Boolean g o o d - d o w n ,  b a d - d o w n , ,  up , ,  g o o d - d o w n 2 ,  bad-down2 ,  upz ,  
good-down~  ~- (d((t , j) ,  ( t , j  - i)) -< V a l ( : , j  - l ) / ~  ( ( V a l ( t , j  - l) -< Val (R i ) ) ) ,  

Comment  g o o d - d o w n j  is t rue  ff p o m t  ( t , j )  ls gonng to  b e c o m e  a n e w  m m t m u m  for  R j  ( the  reg lon  a b o v e )  and  
it is adjacent  to an old mmtmum,  hence any point  of R~ reachable from the old adjacent mmtmum will be 
reachable from the new, 

b a d - d o w n j  *- (d ( ( t , j ) ,  ( t , j  - l)) < V a l ( t , j  - 1))/~ ( ( V a l ( t , j  - I) > Val(R1))) ,  . 
Comment  TMs variable ts true if (t. j') Js not reachable from all mlmma of R~ going through (i, j - I), 

up,  ~ - -d ( ( : , j ) ,  ( : , j  - I)) -> V a l ( t , j  - 1), 
Comment  TMs variable is true tf point (t, j)  ts reachable from any mmtmum of R~ by continuing the path 
that leads from that tam,mum to ( i , j  - I), 

g o o d - d o w n ,  ~ -  (d((l ,  I ) ,  (~ - 1,/))--< Val(i - 1 , 1 ) ) A  ((Val(i  - 1,1)-< VaI(Rz)));  
Comment  Thts variable ts true if point (:, j)  ts going to be a new mtmmum for R~ (the regton minimum,  to 
the side) and ts adjacent  to an old tam,mum of Rz, hence any pomt reachable from the adjacent  old minimum 
wdl be reachable from ( i , j ) ,  

bad-down2  ~---(d((I, j) ,  (t - l , j ) )  < Val(: - I , j ) ) / ~  (Val(: - l . j )  > Val(R2)); 
Comment  This variable Js true ff (i, j)  is not reachable from all mmima  of Rz through (t - I, j ) ,  

u p ,  ~-- d(G 1), (t - -  l ,  j )  ~ Val(l  - -  1, I ) ,  
Comment  TMs variable ts true ff pomt ( l , j )  ts reachable from any mmtma of R 2 by contmmng the path that 
leads from that  mm,mum to (~ - I , j ) ,  

l f g o o d - d o w n ~  A g o o d - d o w n 2  then D, ~ Dz ~ true 
else 
i f g o o d - d o w n ~  A g o o d - d o w n z  then D~ ~-- Dz ~ true 
else 
i f g o o d - d o w n t  A bad -down2  then begin Dt ..- true,  
Dz ~- fa l se ,  end else i f  g o o d - d o w n ,  A up2 then  
begin 

i f d ( ( l , I ) ,  (: ,1 - 1)) -> d( : ( i , i ) ,  (l - 1, / ) )  
then D, ~ D~ <-- true 
else begin D, ~ true, Dz *-  false, end,  

end 
else if b a d - d o w n l  then begin i f g o o d - d o w n z  ~ / u p z  then begin 

D, ~ false, 
D 2 <--- true, 
end 
else begin 
D,  ~ false, 
D.2 <-- false, end; 
end 

else if up~ /~ g o o d - d o w n 2  then begin 
i f  d ( O , j ) ,  (: - l , j ) )  ~> d(( t , j ) ,  ( i , j  - I)) 
then D I ~-- Dz ,-- true 
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else begin Dz ~-- true, D~ ~-- false, end,  
end 

else if up~ A upz then,  if R; = Rz then D; ~-  De ~-- true else 
i f d ( ( t , j ) ,  (t - I , j ) )  >- d(( t ,J ) ,  ( t , J  - I)) 
then begin D~ ~ true, Dz "-- false, end 
else begin D; ~ false; Dz ~ true; end 
end 
Comment  In  t h a t  c a se  on ly  o n e  of  D1 a n d  D2 c a n  b e  t r u e ,  o t h e r w i s e  w e  c a n n o t  guarantee entrance  through 
a m n m m u m  v a l u e  f r o m  all m l m m a  of  b o t h  R~ a n d  R2,  

else if upl A bad-downz  then begin Di ~-- true, D~ ~-- false; end 
Val(t,  l )  ~ oo; 
if D; then begin 
V a l O , j  - 1 ) ~ - - M m ( d ( ( n , j ) ,  ( t , j  - I))). V a l ( t , j  - 1)); 
ValO, j )  ~-- d((z, j ) ,  (i, j - I)) ,  
VaI(R,)  ~ M m ( V a I ( R , ) ,  ValO, j ) ) ,  
end,  
i f  Dz then begin 
ValO - 1, j )  ~ Mm(d (O ,  j ) ,  (t - 1, j ) ) ,  Val(t - 1, j ) ) ,  
Val ( t , j )  ~ M m ( V a l O ,  j ) ,  d(O,J) ,  (t - l , J ) ) ) ,  
Vat(R2) ~ -  Mm (Val(R2), Val(t,j )); 
end, 

t f  no t  ( D ~  ~/ Dz) then Val(RegO, j ) )  ~-- ~ ,  

The e~ and e2 (see Figure 8) may exist or not, and as a result there are four starting 
conditions. The program may put D~, D2, D;,  and D2 or none of them, and hence there 
are 16 cases in a point. (See Figure 9 for a brief description of the different cases.)  
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FIG 9 The different region growing declstons 
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THE 3 OPTIONS TO EXTEND AN OPEN CRACK AND THE 
CORRESPONDING ASSUMP11ON ON DISTRIBUTING 

YORAM YAKIMOVSKY 

FiG 10 The three options to extend an open crack and the corresponding assumption on distributing 

Merging of two regions may always result m transformation into a crack of a previously 
common boundary of the two regions. In general each operation of the region grower is 
fairly elaborate. The data structure used is not described in this paper, but it is essentially 
the same data structure described in [24] with slight modification to include edge line 
representation through chain encoding. 

This one-pass algorithm is local and requires relatively small core resident data. 
However ~t does not create maximal regions with respect to directionality of  the region 
growing. On the other hand, it is relatively simple and fast when other algorithms are 
considered. The maximality problem may be easily corrected if backup is allowed. Note 
also that the threshold Tplays a very small role in defining the output of  the algorithm. 

9. Simplification of the Result of Basic Region Growing 

There are two straightforward options for simplifying the output of the one-pass region 
grower: (1) take all regions that are too small to be interesting and melt them into their 
closest neighbor (the distance between two regions will be defined later in the paper); (2) 
take all short cracks that are weak (strength of the edge line will be defined later) and 
delete them, Of course the threshold below which a crack is weak and a region is small is 
a function of how much we want to elaborate the task of the image analysis and is defined 
heuristically. In fact, in the current implementation all cracks are deleted since the edge 
operator is sensitive enough for our purposes. 

Fro. 11 Ongma! 
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Fio. 12. Reg,on growing based on proposed region grower (Section 7) using the edge evaluation of Section 
3 with default thresholds 

FIG 13. Reconstruction of the p,cture from the mformat~on contained m the regions of Figure 12 

10. Growing Open Cracks Into Closed Cracks 

A t  the  p r e s e n t  t ime  we jus t  o b t a i n  the  c racks  wi th in  r eg ions  an d  m a r k  t h e m  as such .  In  
the  fu tu re  one  m a y  look  for  ways of  c los ing t h e m  to de f ine  f iner  reg ions .  O n e  poss ib le  
way of  c los ing o p e n  c racks  is to  grow t h e m  in l e n g t h  f r o m  the i r  o p e n  e n d  un t i l  t h e  
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FIG. 14 Melting regions from Figure 12 using default threshold on second pass 

FIG. 15 Growing regions with the only constraint that maximum range of gray level in a region ~s less than 
20 (20 selected as best for that image) 

extended edge line meets a!ready existing edge lines and closes. On the open end in each 
step there are three choices of where to extend the edge line: go straight ahead, turn left, 
or turn right. The decision as to which direction to take will minimize the cost of closing 
the open crack, where the cost is defined heuristically. One possible choice is as follows: 

Given the original crack, define two distributions that describe the properties on either 
side of the crack, PD, and PDr The cost of adding an edge unit  will be the maximum 
likelihood ratio between the two assumptions: 

H0: the two sides of the edge unit  belong to the same side of the crack (the best choice 
between D~ on both sides of the extension and D2 on both sides); 

Hi:  there is a different distr ibuuon on either side chosen according to geometrical 
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Fit3 16 Region growing using 1~7=~ (X, - Y,)[ as the edge value with the proposed one pass region grower 
Threshold which was selected manually as optional to that picture was set to 5.n 

Fit3 17 Original 

c o n s t r a i n t  (F igure  10).  
Cos t  = PHJPn~. 
Note  t h a t  s ince the  cost  f unc t i on  is add i t ive  it can  be  u sed  in c o n j u c t l o n  wi th  the  

s h o r t e s t  p a t h  a l g o r i t h m  [16,  Ch .  3] to  f ind  the  n e a r e s t  ( leas t  e x p e n s i v e )  p a t h  to  a c los ing  
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Flo 18 Region growing default parameters (hke Figure 12) 

Fm 19 Reconstruction of Figure 18 

edge umt. Reference [16] describes an apphcat ion of  the shortest path algori thm to edge 
extension under simpler constraints.  This technique is immediate ly  applicable to our 
different cost function and the different terminat ion condit ion on the path.  
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FIG 20 Melting second pass with default threshold apphed to Figure 18 

Fm 21 Region growing with edge values set to ~ 1  (X, - Y,) with threshold set to 8-n 
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FIG 22. Region growing so that maximum range of gray levels within a region is less than 25 

11. Breaking a Region Into Two Around a Crack 
An alternative approach to breaking a region into two regions to make the crack into a 
part of a boundary Is to use special purpose region growing. Assume that there is a crack 
in a regular gray level picture (V(i, j) E R~) with readings with mean/z~ and variance try 
on a small neighborhood on one side of the crack and mean /z2 and variance trz z on the 
other side. Assume that the crack is inside region R; then we can break the points in R 
into two classes, C~ and C2: 

C1 -a { ( i , j )  [ l~/(2¢r).cr, "e-'~v~"J)-~'l)t'~'<-(l/~/(2cr)'°'2)'e-'~v~'a)-~")'~"} ' C 2 ~ R ~ C ' '  

Then we would expect C~ to be on the first side of the crack and C2 on the second side 
of the crack. Unfortunately it may turn out that C~ or Cz is not pathwise connected. As a 
result one of  the connected components that border on the crack should be picked out. A 
more heuristic approach is to grow a region around each of the two sides of the crack, 
and to stop when a new point has a neighborhood that is more likely to belong to the 
other side. Then take the smaller of the two regions resulting and make it C~; then C2 will 
be ( 7 2 = R -  C1. 

This algorithm can be used also to allow flexible human intersection in analyzing the 
scene. This can be done by allowing the operator to use cursor sample points of the two 
subregions of a region. The machine then defines the separating features of the two 
subregions and carries out the sequentation. [12] and [2"3] describe systems that auto- 
matically select the distinguishing features of subregions of a given region. The local 
structure around a crack provides the distinguishing features of the two sides, and 
implementing an automatic system for doing that should be relaUvely easy. Currently 
this option is not used in our system, but descending from down region to subregion is of 
great potential value. 
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12. Merging Regions 

This basic region grower utilizes local detection procedures.  Bet ter  decisions are achiev- 
able (at least theoretically) by using more global information. The problem is how to use 
this additional reformation and stdl keep the program lean and fast. Research in this area 
has been repor ted [24] Our  basic approach is to be oversensitave on the local pass and as 
a result to oversegment the picture. But then we take the output  data (which is simple 
relative to the original picture) and simplify it We take pairs of regions with common 
boundaries and merge them into one To do that rehably,  a confidence value that 
measures the confidence that the pair of regions are different is computed.  Then we 
iteratively select the paar of regions with the lowest confidence of being different in the 
current structure, merge them, and update the structure. The confidence is dependent  on 
two factors: (1) edge line strength (on the common boundary of the two regions),  and (2) 
the difference of the propert ies  inside the two regions. Both of these values are 
computed on the basis of assumptions similar to those used in the edge confidence 
evaluation. For instance, if we assume gray level readings and let x~, i = 1,n, be the 
readings on one region and x~, i = l ,m,  be the readings at the other,  then the second 
factor is 

where 

(1) u , ) =  

(2) Vo = 

(3) /zl = 

CONFIDENCE = V'o"+"IV~ '. V.',"), 

X, + X; /(m + n), (4) V, = ( X , -  /z,) 2 /n,  
1=1 

(X,  - ~o) 2 + ( X ~ -  /,q))2 /(m + n), (5)  ~.~ = X~ /m, 
1=1 

X, /n, (6) V2 = ( X ; -  /~2) 2 /m. 

Results using only this factor are shown below. In [24] the local boundary propert ies  are 
used to compute the edge values. The merging is s topped when the weakest boundary 
strength as more than a gwen threshold 

13. Results 

The suggested one-pass region growing algorithm driven by edge values was imple- 
mented on the General  Automat ion  SPC-16/75 mimcomputer  of the JPL robotics lab. 
The anput picture is digitized into 256 gray levels from the black and white video signal of 
a Cohu camera.  The noise variance as 2, measured from repeti t ious readings of the same 
point in a sequence of images. A Ramtek  display unit is interfaced with the minicompu- 
ter and is used to display the digitized picture in green. Boundary lines of regions are 
dasplayed in red over the original pacture for performance evaluation. 

All cracks are currently ignored.  The threshold below which the edge value is 
truncated to 0 was fixed at 2000 m all the examples below. A system to set the threshold 
automatacaily to allow only 5 percent  of the points of the image to have value over the 
threshold was scrapped in favor of an absolutely fixed threshold.  

The output of the first pass is then passed to a region merger  that reduces the number  
of regaons also with a default fixed threshold (merge till log (confidence) is greater  than 
or equal to 20). The compute time for a 200×200-pixel  picture is approximately a 
minute for a program that is highly inefficient because of debugging aids. 

The results shown m Figures 11-22 are encouraging. We believe that the use of planar  
fits (the gradaent edge detector instead of the step edge detector)  and the dynamic use of 
region features as they grow to upgrade performance of the region grower will result in 
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even better performance. We found the region growing algorithm an important tool in 
scene analysis [25], and look forward to improving its performance. 

Comparison of performance of the suggested region growing approach with two others 
is given. The first alternative is the one-pass region growing described in Section 7,  i .e .  
the use of algorithms that grow regions so that the difference between the maximum gray 
level reading and the minimum gray level reading in a region is less than a predefined 
threshold. The second alternative uses the same region growing where the edge value is 
taken to be I ~'--i (X, - Y,) l, where X, are the readings from one neighborhood and Y, 
are those from the other. The neighborhoods are identical to those of the proposed edge 
operator. In the best case the two alternatives performed similarly to the proposed 
region grower. However, the threshold setting had to be adjusted manually between 
pictures until the performance became comparable to the proposed (adaptive) edge 
detector. 
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