On Verifying Game Designs and Playing Strategies using
Reinforcement Learning

Dimitrios Kalles
Computer Technology Institute
Kolokotroni 3
Patras, Greece
+30 - 61 — 221834

kalles@cti.gr

Keywords
Reinforcement learning, machine learning, games, playability,
design verification.

ABSTRACT

In this paper we elaborate on the application of reinforcement
learning to the design of a new strategy game. We deal with
playability and learning issues, attempting to use intelligently
generated self-playing sequences to determine playability of
various initial board configurations. The machine's a priori
knowledge about the game is restricted to the rules only, so, the
initially encouraging and intuitive results suggest that this design
verification strategy may be useful to a board range of design
problems.

1. INTRODUCTION

Scientists have been focusing on game theory since many decades.
By using artificial intelligence methods, there is an ongoing effort
to create “smart” programmes, that can compete with humans in
several games. In 1955, Samuel [6] created a checkers
programme, however chess programmes have been developed
since the sixties. During the last decade, IBM has made strenuous
efforts to develop (first with Deep Thought, later with Deep Blue)
a chess programme equivalent to the best human player. Checkers
experienced also a fascinating development, yet less Al-based [7].

A classic method used is based upon the creation of a tree, where
the numerous game states are modeled as vertices and the possible
moves as edges. By searching the tree in depth, using the minmax
algorithm [9], the “best” move is computed, according to the
value estimation of each vertex-position. In order to accelerate
computation, we can use the (a, yij) pruning method [3], to search
the tree in more depth in the same amount of time. However, it
should be clear that in the above case, the programmer’s ability in
the particular game is a vital component to the success or failure
of the experiment, due to the need of correctly modeling several

Permission to make digital or hard copies of part or all of this work or
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citdion onthefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

SAC 2001, Las Vegas, NV
© 2001 ACM 1-58113-287-5/01/02...$5.00

Panagiotis Kanellopoulos
Computer Technology Institute
Kolokotroni 3
Patras, Greece
+30 - 61 - 221834

kanellop@ceid.upatras.gr

attributes at the same time. Moreover, the “Achilles’ heel” of this
approach is the horizon effect, which means that the value
estimated depends on the depth that the tree is searched, resulting
sometimes in bad estimations.

On the above grounds, as well as for the sake of experimentation,
we chose to make use of machine learning methods, and more
specifically reinforcement learning (RL). There have been already
developed several games, that exploit RL, the most prominent of
which is TD-Gammon by Tesauro [15], which led even to the
reconsideration of the policy human players use. Afterwards,
games like Tetris, Blackjack, Othello [5], chess [16] etc, were
analyzed under the same approach (see also [1][8][10] for
alternative approaches and related experiences).

For the sake of completeness, we note that RL can be briefly
described as producing an iterative optimization of the values of
search states in a search space, using a guided battery of trial-and-
error experiments.

The aim of this research is the discovery of a “smart" strategy for
the strategy game defined in the next section, whereas we should
emphasize the fact that the machine's initial knowledge for the
game is restricted to the rules, and there is no other a priori
knowledge. By aiming to utilize RL, not only can we make an
attempt at determining the playability of the game, but we also
pave the way for conjecturing that machine learning methods
provide a powerful toolkit in the improved design of rule-based
games.

2. DESCRIPTION OF THE GAME

The game, designed by one of the authors, is played on a
rectangular board, with each side having size n, where at the
lower left and the upper right part of the board the players’ bases
are located, also rectangular of size a for each side. Each player
possesses S pawns, that initially are inside the corresponding base,
which is considered as one square and not as a set of squares (see
. Each player’s goal is to get one of his pawns into the
enemy base. If a player runs out of pawns, the opponent is
declared as winner. Each pawn can move to an empty square that
is vertically or horizontally adjacent, provided that the pawn’s
maximum distance from its base is not decreased.

For example, a pawn that stands on square (x,y) can move to
square (x,z), if

max(x —a,y —a) < max(x —a,z —a),

if the first player moves, or else if

max(n—a—-x,n—a—-y)<max(n—a—-x,n—a—z).

Figure 1. The game board.

This way, pawns can move “backwards” only towards one
dimension, so that their placing requires attention and discretion.
Note that such a movement is considered “backward” from the
point of view of the enemy; regarding its own base a pawn either
advances or maintains the same distance. shows
examples of legal and illegal backward moves, where pawn X can
move ‘‘backwards’’ only to the ‘“OK’’ square.

O
&)o@
O

Figure 2. Backward moves.

As soon as a move has taken place, all pawns that have no legal
move are pronounced “inactive” and are removed.
shows such an example, where pawn X cannot move and is
removed, if it is that player’s turn to move.

This rule prevents the frontal engagement of the two “armies” and
the total blocking of the position, where upon no moves would be
possible. The rule can be considered as enforcing a type of inertia
on an army.

Since the squares, that are adjacent to the base, are actually the
“winning” squares, each player’s goal is to place one of his pawns
in such a square. [Figure 4] shows a situation, where the player to
move can win the game, while in |Figure 5| the white player must
move one of his “base” pawns to square (5, 4) or else black wins
by playing there.

describes a short game, from start to end (moves are left
to right, top to bottom).

Qe
®

Figure 3. An example of a pawn turned inactive.

Figure 4. An example of a winning configuration.

®
0
® [O
® O

Figure 5. An example of a configuration leading to a forced
move.

2.1 Playability "defined"

An important feature of this game is that (to our knowledge) it
has, practically, never been played by humans. This implies our
ignorance of how interesting and challenging it is, by means of the
different policies that could be tried.

We have set out with the goal that the two players should have
roughly the same chances to win. A counterexample is “tic-tac-
toe”, where several playing policies are well-known and the first
player has significantly better chances. Furthermore, the existence
of a “defending” policy -that could provably prevent defeat-
would be a setback, as this would make the game trivial.

3. ANALYSIS OF THE GAME USING
REINFORCEMENT LEARNING

Our approach is based on reinforcement learning. The a priori
knowledge, the machine possesses, consists of the rules of the
game, because this way there is more flexibility during the
learning procedure, since it is not subject to any bias. Our aim is,
through a number of “self-playing” games, to improve the
machine performance. RL is based on a fact, familiar from
psychology, that the consequences of an action affect positively or
negatively its recurrence.

A-)Q

{
)
OO
o
O
O O

= olC ! :)
[[o
O @] O @]

Figure 6. A short game.

RL combines the fields of dynamic programming and supervised
learning to yield powerful machine-learning systems. It is an
approach to machine intelligence that pieces two disciplines
together to successfully solve problems that neither discipline can
individually address. RL is almost an orthogonal approach to
other machine learning paradigms, though as will be shown again,
it can team up with at least the neural networks paradigms. In RL,
the computer is simply given a goal to achieve; and then learns
how to achieve that goal by trial-and-error interactions with its
environment.

This environment must at least be partially observable by the
reinforcement learning system, and the observations may come in
the form of sensor readings, symbolic descriptions, or possibly
“mental” situations (e.g., the situation of being lost). The actions
may be low level (e.g., voltage to motors), high level (e.g., accept
job offer), or even “mental” (e.g., shift in focus of attention). If
the reinforcement learning system can observe perfectly all the
information in the environment that might influence the choice of
action to perform, then the system chooses actions based on true
“states” of the environment. This ideal case is the best possible
basis for reinforcement learning and, in fact, is a necessary
condition for much of the associated theory.

Before moving on, we reiterate same basic nomenclature.

By state s we mean the condition of a physical system as specified
by a set of appropriate variables. A policy determines which
action should be performed in each state; a policy is a mapping
from states to actions. Reward r is a scalar variable that
communicates the change in the environment to the reinforcement
learning system. For example, if an RL system is a controller for a
missile, the reinforcement signal might be the distance between
the missile and the target (in which case, the RL system would
learn to minimize reinforcement). The value V(s) of a state is
defined as the sum of the rewards received when starting in that
state and following some fixed policy to a terminal state. The
optimal policy would therefore be the mapping from states to
actions that maximizes the sum of the rewards when starting in an
arbitrary state and performing actions until a terminal state is
reached. Under this definition the value of a state is dependent

upon the policy. The value function is a mapping from states to
state values and can be approximated using any type of function
approximator (e.g., multi-layered perceptron, memory based
system, radial basis functions, look-up table, etc.)

Temporal difference (TD) learning [13] is a very exciting
approach to reinforcement learning. It is a combination of Monte
Carlo and dynamic programming ideas. TD methods update
estimates based in part on other learned estimates, without waiting
for a final outcome (this is called bootstrapping). Whereas Monte
Carlo methods must wait until the end of the episode to determine
the increment to V(s,) (only then is the reward known), TD
methods need wait only until the next time step. Eligibility traces
are one of the basic mechanisms of reinforcement learning. For
example, in the TD(4) algorithm, A refers to the use of an
eligibility trace and reflects the learning experience (past moves
considered). It can be seen as a temporary record of the
occurrence of an event, such as the visiting of a state. When a TD
error occurs, only the eligible states or actions are assigned credit
or blame for the error.

The game is a discrete Markov procedure of discrete time, since
there are finite states and moves, while each episode does
terminate. The algorithm in use is 7D(4), as described in [14].
Like the methods presented in the introduction, each position is
modeled with a vertex and each move with an edge. The
difference is that it suffices to check only the adjacent vertices,
instead of the entire tree. Each value is backed up according to the
following equation.

V(S)new =V ()ota +ae(s)r +V(s') =V (s)

where s is the state-position, V(s) its value, e(s) the eligibility
trace, r the reward from the transition, a the learning rate and s’
the resulting state-position.

The complexity of this game depends mainly on the value of
parameters n, a, and . The number of the several positions that
might occur, is bounded from above by

55 . 5
E)EB(lZl+j.—2a)(;+J)(ﬂ+l—i)(ﬂ+1_j)

A better estimation based on n, a, £ is not possible, as the validity
of a position depends does not on the number of the pawns, but on
their exact placing on the board. For large values of n, a, and f
this number gets too large, so that the use of a map with each
different position becomes unrealistic. Hence, there is a need for
generalization, e.g. through a neural net like in [15], see also
section 3.2 of this paper.

3.1 Implementation Issues For the Tabular

Case

We used temporal difference learning, TD(1), and more
specifically the on-line, tabular algorithm. Thus, the update takes
place after each move, and not in batch mode. The discount
parameter is set to one (y=1), because the game is of discrete and
finite time, so that the reward is not diminished. Moreover, we
chose a medium value for A, which is 4=0.5, meaning that the
credit assignment is practically restricted to the last 6-7 moves.
Regarding parameter o, that determines the convergence rate, the
choice was to use the value 0.001. As to the eligibility trace, we

chose to use replacing [11] instead of accumulating traces,
because the latter approach has been known to suffer from some
weaknesses, the main one being that a repeated wrong action
hinders learning, due to a large bad trace. These weaknesses are
well analyzed in [12].

Thus, for each state S,
e,(8)=pe,1(s), s#s,
otherwise
e (s)=1, s=s,

where s, is the state selected at time ¢. Accumulating traces are
alike, except for the chosen state; then

e (s)=pe_1(s)+1, s=s;.

Finally, each action-move is given reward -/, unless the resulting
state is a final one; then it is +50 for the winner and -50 for the
loser’s last move, since it led to defeat.

The encoding used to describe the base, is to name each square
after its axis coordinates, i.e. every square is named (x,y), with x, y
taking values from 0,...,n-1. Each position is described uniquely
with a string, that contains as substrings the placing of the two
opponents’ pawns. Each substring is computed through the
equation

ﬂv
S= anj(xjn+yj +1)
J=1

with B’ being the number of “active” pawns, that are sorted
according to their coordinates.

The policy, that the machine uses to select between moves is the
€ -greedy policy, with & =0.9 for both players, i.e. with
probability 0.9 the machine chooses the best, according to present
knowledge, move (exploitation), otherwise a random move is
played (exploration).

The array that contains the state values -the reason why the
approach is called tabular- is stored not as one piece, but as
clusters of values, and a data structure (hashtable) is used, in
order to store the states during execution time, to reduce the
burden of hard disk access time. A possible mapping of each state
to a file, would create many files, and as most systems have a
minimum disk space that a file needs, there would be a significant
waste of capacity.

3.2 Implementation Issues For the Neural
Network Case

As stated above, for most values of n, a, and § the use of the
tabular algorithm is impossible due to memory requirements.
Thus, there is a need for generalization, so that we can
approximate the whole state space. To do that we use an artificial
neural network. In fact, we use two networks, one responsible for
each player’s behavior, because the state spaces for the two
players are separated, having no state in common. Unlike games
like chess or backgammon, each position is associated to the
player, whose turn is to move, i.e., a specific board position with
player A to move cannot ever appear on player's B turn. Thus,
each player has a unique state space to learn. This fact enables

further experimentation, because we can try different
configurations for the two opponents.

The algorithm wused for the training was “vanilla”
backpropagation, with y=0.95 and A=0.5. The reward given for
victory is now +1, for defeat -1 and 0 otherwise. Using y #1 we
favor quick victories, as the reward lessens decreases over time.

N
Network weights constitute a vector 6 , where the update occurs
according to

- - -
0 141 291+6(5t ey

where &, is the TD error,

Oy =1 + Wi (s101) = Vi (5y)

N
and e is a vector of eligibility traces, one for each component of

N
6, updated by

- -
er=yA e;_1+V;IVt(st),

- -
with eg =0 .

On representation issues, each of the n? —2a> “free” squares is
assigned two input nodes, one for each player, that describe
whether there is a pawn on that square. Two more nodes show if a
pawn has captured the enemy base, and eight more nodes serve to
show the number of pawns that still reside in the bases. More

specifically, we check if this number exceeds g , g or % and

“turn on” the appropriate node. Thus, we have a total of

n* —2a% +10 input nodes, and half as many hidden nodes. All
nodes make wuse of the nonlinear sigmoid function,

h(j)= , whose values range from zero to one. Thus,

N
~Zwiig(i)
I+e !

the only output node can be regarded as an approximator of the

probability of winning, beginning from a specific position.

Fast convergence to the real state values depends on the
parameters. The most important factor seems to be the rewards
being used, because they have a deep impact on the machine’s
bias towards different moves. In order to give more credit to a
short victory over a longer one and to avoid repetition of moves,
each move is given a small negative reward (in fact a penalty). If
the reward given for victory is small compared to each move’s
reward, then if the “episode” lasts long enough, the total reward
could be negative. This would mean that the machine gets
discouraged to repeat such actions, although they led to success.
Moreover, if the reward is big enough, then a good move that was
followed by poorer choices and finally led to defeat, would face a
significant decrease in its value.

Another important factor is 4, because it determines the point until
which credit assignment takes place. When =0 only the last state
has its value affected, while as 4 approaches 1 almost the entire
sequence gets updated. An appropriate choice for 1 allows faster

convergence. As far as the learning rate a is concerned, we can be
assured of convergence (with probability 1) only if

Lag=oo, k<o
K K

In our application, a small enough value (0.001) was decided on
implementation grounds.

Due to the self-play approach, we can experiment with the policy
the two opponents follow. For example, they could have different
¢ in g-greedy policy for deciding their actions, as to enable more
experimentation, while if e=1 for one of the opponents, then we
have learning versus a specific deterministic opponent.

3.3 A Summary of the Experimental Results
The alternatives described above were fully implemented to
experiment with.

During experiments with the tabular approach and small
parameter values (n=5, a=2, f=1) we observed that the games are
too short, the majority lasted the minimum number of 4 moves,
and the first player wins most of the time. This could mean that
the machine does not understand “blocking” as a defensive mean.
If two humans played under such configuration, then the first
player should always win. Approximately 5,000 games were
analyzed.

With different values (n=6, a=2, f=3), we observed that each
player wins about the same number of games, very few games last
the minimum possible of 6 moves, with some games lasting as
long as 40 moves. Approximately 30,000 games were analyzed.

On the other hand, during experiments with the neural net
approach, with larger parameter values (n=8, a=2, f=5), we
observed that almost all games last more than 100 moves, each
player winning approximately half of the games. After 74,000
games, the average number of moves per game is 184.5, while the
standard deviation is 108.4. White won 49.26% of the games,
while the rest 50,73% were won by black. Table 1 shows for every
10,000 games the number of moves played, and the games won by
white and by black.

In short, the preliminary results are that for n=5,6, games are
quite short, while for n=8 they seem worth playing (note that we
do not detect playing cycles; see discussion next).

Table 1: Summary of game statistics

Games Average Standard White Black
played number of | deviation wins wins
*10,000 moves
0-1 179.94 108.02 47.83% 52.17%
1-2 182.88 108.44 47.72% 52.28%
2-3 187.87 109.17 50.30% 49.70%
3-4 186.88 109.58 49.98% 50.02%
4-5 184.90 108.62 50.03% 49.97%

10

5-6 183.53 107.56 49.00% 51.00%
6-7 184.76 106.87 49.79% 50.21%
7-74 186.37 109.05 49.85% 50.15%

An obvious observation is that the larger the board, the larger
average number of moves that a play lasts. This is a mildly
positive result in the sense that it does not uncover any inherent
faults in the game’s logic or in the algorithms. However, the
fundamental issue raised is that if one would assign time unit
duration to each move, the results directly relate to the extent that
a game may be interested or boring. An average of 180 moves
(per player), as is the case for the large board may be a bit too
much for human players, but then again we have not analyzed
cyclic movements yet. On the other hand, it does seem that neither
player enjoys an advantage (or disadvantage) of pole position, so
an extra level of fairness is accommodated.

We do not have a comment yet on the number of games used in
the analysis. After all, truly experimenting only as much as
required seems an elusive goal; to attain it we must first positively
deal with “similar" games, otherwise there is a real risk of training
against automatic opponents with superficial differences. A self-
learning experiment must deal effectively and efficiently with
cycles in the state-space search.

4. EXTENSIONS

There are a number of key research and development extensions
that need to be made to validate the game’s playability and
improve its analysis. These range from improving accessibility to
the game software, to analyzing alternative starting configurations
(including selected openings) and endgames, to experimenting
with different rule sets, and to exploring multi-player (more that
two) games for agent-oriented research. We elaborate on those
directions below.

Our next step would be to make the program public, through the
Internet. That would make the learning procedure more
interactive; and would also result in a critical test regarding
playability; not to mention the possibility of attracting people to
actually test it out in an educational context [4].

That this is a necessity prompted us to write all code in Java.
However, this has resulted in inefficiencies. From an
architectural-implementation point of view, we plan to separate
the basic computation-intensive layer from the interface.

Furthermore, since there is no “benchmark” program for the
game, we would like to train a neural network and when it reaches
an acceptable level of play, we can stop the learning procedure
and use it as a benchmark. It would be interesting to test how
efficiently machines with different choices of parameters, for the
same configuration, improve when playing versus the
“benchmark” machine.

To improve our machine’s ability, we can combine RL with
conventional searching e.g. we can use two-ply search and only
then apply learning. Experimenting with board and base size is
also interesting. Intuitively, a small base size would result in more
space to maneuver, but would make tenacious defense easier to
accomplish. Moreover, when playing with few pawns, the first

player seems to have an important advantage (as we have already
stated there is no way for the second player to win when f=1).

Adding "special" features either to the board or to the pawns is
worth experimenting. Each pawn could be able to "restart" from
its base, no matter its position, once in its “lifetime”, or it could
make a “backward” move for a restricted number of times. Placing
obstacles in the middle of the board, (e.g. the central squares
could be impassable) as if a forest or a lake resides there, would
probably force the two opponents to make use of the whole board.
Alternatively, the central squares could be seen as a temporary
position for a pawn, e.g. a pawn could stay in the centre for a
limited number of moves.

Futhermore, we can add more players (probably two more, for a
total of four, with one base each), so we can experiment with
multiagent learning. Allowing alliances, e.g. diagonally opposed
allies, would lead to team play learning.

On a more research-oriented direction, the speed-up of the RL
process would benefit the game analysis. To this end, the
incorporation of Explanation Based Learning strategies might
prove useful [2]; the concept is clearly interesting but its
applicability has been limited to date. Yet, it seems that it may be
a good idea to couple RL with deductive approaches, since these
could lead to discovering (automatically) circular or semi-circular
paths in the learning trajectory. Note that our current approach
does not deal with cycles and we have no firm position as to
whether we should hand-test the generated games for cycles, and
then implement a work-around, or we should allow RL to
discover them -and appropriately circumvent them. Furthermore,
the EBL-RL framework could help resolve whether the present
game can be dealt with in pieces (opening, endgame) or a more
“‘continuous’’ scheme is called for. In the latter case it may turn
out that a player may have to first achieve a good status in the
game, then destroy it to trade it with an advance. Classical RL will
probably find this very difficult.

We have decided to first invest our efforts towards improving the
game’s playability and then towards further research on actual
algorithms.

The above extensions and variations to the basic theme can be
rapidly designed and tested, as regards playability and
interestingness. It is crucial to observe that RL need not be aware
of those various options; it can evolve playing policies without
such knowledge. So, in essence, we posit that with the
methodological steps described in this paper, one can
substantially speed-up the design of games where strategy is
core, by efficiently and massively experimenting with various rule
sets.

To this end, we believe that this paper not only validates the
approach put forward by other games-analyzers [2,9,10] but, most
importantly, it puts-forward that using such analysis techniques
one can verify the design of a game, thus saving enormous
amounts of man-effort. It is also extremely promising in opening
up the experimental validation of designs where different
sequences of actions may lead to very different conclusions, in
any application field.

11

We would also hope that the games industry is listening.

5. REFERENCES

(1]

(2]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

M Buro. How machines have learned to play
Othello. IEEE Intelligent Systems 14, No. 6, Nov-
Dec 1999, pp. 12-14.

Dietterich, T. G., Flann, N. S. (1997). Explanation-
based Learning and Reinforcement Learning: A
Unified View. Machine Learning, 28, 1997, pp.
169-210.

D.E Knuth, R.E Moore. An analysis of alpha beta
pruning. Artificial Intelligence 6(4), 293-326, 1975.

D. Kumar. Pedagogical Dimensions of Game
Playing. ACM intelligence: New visions of Al in
Practice 10, No. 1, Spring 1999, pp. 9-10.

A. Leouski. Learning of Position Evaluation in the
Game of Othello. Master’s project: CMPSCI 701.
University of Massachussetts, Amherst, 1995.

A. Samuel. Some Studies in Machine Learning
Using the Game of Checkers. IBM Journal of
Research and Development 3, 210-229, 1959.

J. Schaeffer. One Jump Ahead: Challenging Human
Supremacy in Checkers. Springer Verlag, 1997.

J. Schaeffer. One Jump Ahead: Challenging Human
Supremacy in Checkers. Springer Verlag, 1997.

C.E. Shannon. Programming a computer for
playing chess. Philosophical Magazine 41, 256-
275, 1950.

B. Sheppard, Mastering Scrabble. IEEE Intelligent
Systems 14, No. 6, Nov-Dec 1999, pp. 15-16.

S.P. Singh, R.S. Sutton. Reinforcement Learning
with replacing eligibility traces. Machine Learning
22, 123-158, 1996.

R.S. Sutton. Temporal Credit Assignment in
Reinforcement Learning. Ph.D. Thesis, University
of Massachusetts, Amherst, 1984.

R.S. Sutton. Learning to Predict by the Methods of
Temporal Differences. Machine Learning 3, 9-44,
1988.

R.S. Sutton, A.G. Barto. Reinforcement Learning.
An Introduction. MIT Press, Cambridge,
Massachussetts, 1997.

G.J. Tesauro. Temporal Difference Learning and
TD-Gammon. Communications of the ACM 38,
58-68, March 1995.

S. Thrun. Learning to Play the Game of Chess.
Advances in Neural Information Processing
Systems 7, 1995.

	INTRODUCTION
	DESCRIPTION OF THE GAME
	Playability "defined"

	ANALYSIS OF THE GAME USING REINFORCEMENT LEARNING
	Implementation Issues For the Tabular Case
	Implementation Issues For the Neural Network Case
	A Summary of the Experimental Results

	EXTENSIONS
	REFERENCES

