
A. Cortesi, G. Filé (Eds.): SAS’99, LNCS 1694, pp. 194–210, 1999
© Springer-Verlag Berlin Heidelberg 1999

Translating Out of Static Single Assignment Form

Vugranam C. Sreedhar1, Roy Dz-Ching Ju2, David M. Gillies3, and Vatsa Santhanam4

Performance Delivery Laboratory
Hewlett-Packard Company

11000 Wolfe Road
Cupertino, CA 95014, USA

Abstract. Programs represented in Static Single Assignment (SSA) form
contain phi instructions (or functions) whose operational semantics are to merge
values coming from distinct control flow paths. However, translating phi
instructions into native instructions is nontrivial when transformations such as
copy propagation and code motion have been performed. In this paper we
present a new framework for translating out of SSA form. By appropriately
placing copy instructions, we ensure that none of the resources in a phi
congruence class interfere. Within our framework, we propose three methods
for copy placement. The first method pessimistically places copies for all
operands of phi instructions. The second method uses an interference graph to
guide copy placement. The third method uses both data flow liveness sets and
an interference graph to guide copy placement. We also present a new SSA-
based coalescing method that can selectively remove redundant copy
instructions with interfering operands. Our experimental results indicate that the
third method results in 35% fewer copy instructions than the second method.
Compared to the first method, the third method, on average, inserts 89.9%
fewer copies during copy placement and runs 15% faster, which are significant
reductions in compilation time and space.

1. Introduction

Static Single Assignment (SSA) form is an intermediate representation that facilitates
the implementation of powerful program optimizations [7, 12, 13], where each
program name is defined exactly once and phi (φ) instructions (or nodes) are inserted
at confluent points to merge multiple values into a single name. Phi instructions are
not directly supported on current architectures, and hence they must be eliminated
prior to final code generation [7]. However, translating out of SSA form is nontrivial
when certain transformations, such as copy folding and code motion, have been

1

Vugranam C. Sreedhar is currently affiliated with IBM T. J. Watson Research Center, and his
 e-mail address is sreedhar@watson.ibm.com.
2

The e-mail address of Roy D. C. Ju is royju@cup.hp.com.
3

David Gillies is currently affiliated with Programmer Productivity Research Center at Micro-
soft Research, and his e-mail address is dgillies@research.microsoft.com.

4
The e-mail address of Vatsa Santhanam is vatsa@cup.hp.com.

Translating Out of Static Single Assignment Form 195

performed. Most of the previous work on SSA form have concentrated either on
efficiently constructing the representation [7, 11], or on proposing new SSA-based
optimization algorithms [4, 5, 12].

We are aware of the following published articles related to translating out of SSA
form. Cytron et al. [7] proposed a simple algorithm for removing a k-input phi
instruction by placing ordinary copy instructions (or assignments) at the end of every
control flow predecessor of the basic block containing the phi instruction. Cytron et
al. then used Chaitin’s coalescing algorithm to reduce the number of copy instructions
[3]. The work in [2] showed that Cytron et al.’s algorithm cannot be used to correctly
eliminate phi instructions from an SSA representation that has undergone
transformations such as copy folding and value numbering. To address this, Briggs et
al. [2] proposed an alternative solution for correctly eliminating phi instructions.
Briggs et al. exploit the structural properties of both the control flow graph and the
SSA graph of a program to detect particular patterns, and use liveness information to
guide copy insertions for eliminating phi instructions. Any redundant copies
introduced during phi instruction elimination are then eliminated using Chaitin’s
coalescing algorithm [3]. Pineo and Soffa [10] used interference graph and graph
coloring to translate programs out of SSA form for the purpose of symbolic
debugging of parallelized code. Leung and George [8] constructed SSA form for
programs represented as native machine instructions, including the use of machine
dedicated registers. Upon translating out of SSA form, a large number of copy
instructions, including many redundant ones, may be inserted to preserve program
semantics, and they rely on a coalescing phase in register allocation to remove the
redundant copy instructions.

In this paper we present a new framework for leaving SSA form and for
eliminating redundant copies. We introduce the notion of a phi congruence class to
facilitate the removal of phi instructions. Intuitively, a phi congruence class contains a
set of resources (or variables) that will be given the same name when we translate out
of SSA form. The key intuition behind our method for eliminating phi instructions is
to ensure that none of the resources within a phi congruence class interfere among
each other. The idea is very similar to coloring-based register allocation problem [3],
where if two live ranges interfere they should be given two different physical
registers. But if there is only one unused physical register available, then one of the
live ranges should be spilled to eliminate the interference. To break the interferences
among resources in a phi instruction we introduce “spill code” by placing copy
instructions. Another unique aspect of our method is that we don’t use any structural
properties of either the control flow graph or the SSA graph to guide us in the
placement of copy instructions.

We present three different methods of varying sophistication for placing copies.
Our first method is closely related to the copy placement algorithm described in [7]
except that it correctly eliminates copies even when transformations, such as copy
folding and code motion, have been performed on the SSA form of a program. This
method does not explicitly use either liveness or interference information to guide
copy insertion and placement, and therefore places many more copies than necessary.
To reduce the number of copies that are needed to correctly eliminate phi instruction,
our second method uses an interference graph to guide copy placement. Although it
places fewer copies than the first method, it still places more copies than necessary.
To further reduce the number of copies, our third method uses both liveness and
interference information to correctly eliminate phi instructions. A unique aspect of

196 V.C. Sreedhar et al.

this method is that any copies that it places cannot be eliminated by the standard
interference graph based coalescing algorithm.

In this paper we also present a new SSA-based coalescing algorithm that can
eliminate redundant copies even when the source resource (or variable) and the
destination resource interfere with each other when certain constraints are satisfied.
This algorithm also uses phi congruence classes to eliminate redundant copies.

We implemented all three methods for copy placement and also implemented our
SSA based coalescing algorithm. Our experimental results indicate that our third
method is most effective in terms of the number of copies in the final code, and it is
also faster than the first method. Note that reducing the compilation time and space
usage is a key motivation to develop a new method to translate out of SSA form. On
average we found that our third method inserts 89.9% fewer copies compared to the
first method. This also means that our third method is an improvement over the
algorithms proposed by Cytron et al. [7] and Briggs et al. [2] (since they also
pessimistically insert copies to eliminate phi instructions).

The rest of the paper is organized as follows. In the next section we will motivate
the problem of translating out of SSA form, and introduce the notion of phi
congruence class. Section 3 briefly discusses liveness analysis for programs under
SSA form. Section 4 presents three different methods for placing copies. Section 5
presents a new SSA-based coalescing algorithm for eliminating redundant copies.
Section 6 presents experimental results. Finally, Section 7 discusses related work and
presents our conclusion.

2. Motivation and Phi Congruence Class

When the SSA form of a program is constructed using the algorithm of Cytron et al.
[7], the representation has the following two properties:
• Resources (or variables) are appropriately renamed so that each resource has a

single definition.
• Phi instructions are introduced to merge multiple definitions coming from distinct

control flow paths. Each phi instruction has one input operand for each control
flow predecessor.

Figure 1 shows a program in SSA form. Each source operand in a phi instruction is a
pair, x:L, where x is a resource name and L represents the control flow predecessor
basic block label through which the value of x reaches the phi instruction [6].

Given a resource x let phiConnectedResource(x) = {y | x and y are referenced (i.e.
used or defined) in the same phi instruction, or there exists a resource z such that y
and z are referenced in the same phi instruction and x and z are referenced in the same
phi instruction}. We define phi congruence class as phiCongruenceClass[x] to be the
reflexive and transitive closure of phiConnectedResource(x). Intuitively, the phi
congruence class of a resource represents a set of resources “connected” via phi
instructions. The SSA form that is constructed using Cytron et al.’s algorithm (which
we call the Conventional SSA (CSSA) form) has the following important property.
• Phi Congruence Property. The occurrences of all resources which belong to the

same phi congruence class in a program can be replaced by a representative

Translating Out of Static Single Assignment Form 197

resource. After the replacement, the phi instruction can be eliminated without
violating the semantics of the original program5.

For the example shown in Figure 1, resources x1, x2, and x3 that are referenced in the
phi instruction belong to the same phi congruence class. Let x be the representative
resource of the congruence class. We can replace each reference to x1, x2 and x3 by
x. Once we perform this transformation, we can eliminate the phi instruction. The
resulting program is shown in Figure 2.

Referring back to the example shown in Figure 1, let us coalesce the copy x2=y.
The resulting SSA form is shown in Figure 3. Now if we use the phi congruence
property to replace the references of x1, x3, and y with a representative resource the
resulting program will not preserve the semantics of the original program. This is
because, after folding the copy x2=y, x1 and y have overlapping live ranges, and
hence should not be replaced by the same name. Therefore any interfering resource in
a phi congruence class should be “spilled” by inserting copies. In other words we
should ensure that none of the resources in a phi congruence interfere with each other.
The idea is very similar to coloring-based register allocation problem [3], where if
two live ranges interfere they should be assigned different physical registers. But if
there is only one unused physical register available, then one of the live ranges needs
to be spilled to eliminate the interference.

5

Phi congruence is analogous to the notion of register “webs” (outside of SSA form) defined
in [9].

198 V.C. Sreedhar et al.

Given a CSSA form, optimizations such as copy folding and code motion, may
transform the SSA form to a state in which there are phi resource interferences. Let us
call such an SSA form TSSA (for transformed SSA) form. Our algorithm for
translating out of the SSA form consists of three steps:
• Step 1: Translating the TSSA form to a CSSA form;
• Step 2: Eliminating redundant copies; and
• Step 3: Eliminating phi instructions and leaving the CSSA form.
Our approach6 to eliminating phi resource interferences in Step 1 relies on liveness
analysis and interference detection, which is discussed in the next section. Step 2 is
our new CSSA-based coalescing algorithm (see Section 5). Step 3 is a straightforward
application of the phi congruence property and elimination of phi instructions (the
details not presented).

3. Liveness and Interference

A variable v is live at a program point p if there exists a path from p to a use of v that
contains no definition of v [1]. A traditional bit vector method can be used to analyze
programs in SSA form for liveness by treating phi instructions specially. Cytron and
Gershbein [6] made an important observation regarding phi instructions. Given a phi
instruction x0 = phi(x1:L1x2:L2,x3:L3,..., xn:Ln) that textually appears in a basic
block L0, each use of xi, where 1 <= i <= n, is associated with the end of the
corresponding predecessor basic block through which xi reaches L0. In this paper we
associate the definition of a phi instruction to be at the beginning of the basic block
where the phi instruction textually appears, i.e., basic block L0, and hence x0 is
treated live upon entering L0.

Given the above special treatment for phi instructions, we can use the traditional
bit vector technique for liveness analysis, and construct the interference graph. Two
variables in a program are said to interfere if their live ranges overlap at any program
point. We will use the following notation to describe the liveness properties at the
beginning and at the end of each basic block, respectively.
1. LiveIn[L]: The set of resources that are live at the beginning of basic block L.
1. LiveOut[L]: The set of resources that are live at the end of basic block L.

4. Translating TSSA Form to CSSA Form

The process of translating TSSA form to CSSA form ensures that none of the
resources referenced within a phi instruction interfere with each other. Here we
present three methods for translating a TSSA form to a CSSA form.

6

Although there are known SSA-based transformations that preserve CSSA form, e.g. [4], they
often require the computations of additional data flow information, e.g availability and
anticipatability. Furthermore, insisting on CSSA form may constrain some optimization
opportunities.

Translating Out of Static Single Assignment Form 199

4.1 Method I: Naive Translation

In this method we naively insert copies for all resources referenced in a phi
instruction; one copy is inserted for each source resource in the corresponding basic
block feeding the value to the phi instruction, and one copy is inserted in the same
basic block as the phi instruction for the target resource. Figure 4 illustrates this naive
translation.

This method is very simple to implement but introduces many redundant copies.
The redundant copies can be eliminated using our CSSA-based coalescing algorithm
(see Section 5). It is important to note that when a resource of a phi instruction is
spilled we will always ensure that the new resource is referenced only in the phi
instruction. This spilling technique will also be used even for Method II and Method
III translation.

4.2 Method II: Translation Based on Interference Graph Update

In this method we will insert copies only if resources of phi instructions interfere.
Consider the example shown in Figure 4(a). Here we can see that x1 and x2 interfere

200 V.C. Sreedhar et al.

with each other. To eliminate the interference we insert two copies, one for x1 and
one for x2. (Since x3 does not interfere with either x1 or x2 no new copy is inserted
for x3.) Next we incrementally update the interference graph and the phi congruence
classes. Applying this algorithm to the example in Figure 4(a) results in the CSSA
form shown in Figure 5. Notice that we have inserted two copies. But it is evident
from the figure that only the copy x2’=x2 is needed to ensure correctness. Since the
interference graph does not carry control flow information, it is difficult to determine
when copy instructions are redundant using the interference graph alone. Also,
without the liveness information, the interference graph update will be conservative.
In the next section we will show how to further reduce the number of copies that are
needed to correctly eliminate phi instructions by using both interference and liveness
information for guiding copy insertions.

It is important to observe that while deciding whether copy instructions are needed
for x1 and x2, in addition to checking the interference between x1 and x2, we must
also check for interferences with all other resources that will be replaced with the
same names as x1 and x2 after translating out of SSA form (i.e., all members of their
phi congruence class). We will elaborate on this in the next section.

4.3 Method III: Translation Based on Data Flow and Interference Graph
Updates

Since an interference graph does not carry control flow information we may insert
more copies than necessary in Method II to eliminate the phi resource interferences.
In this section we will use liveness information in addition to the interference graph to
further reduce the number of copies that are necessary to eliminate the phi resource
interferences.

To motivate the new algorithm, consider Figure 4(a). Here x1 and x2 interfere,
LiveOut[L1] = {x1, x2}, and LiveOut[L2] = {x2}. Notice that x2 is in LiveOut[L1],
and we claim that inserting a new copy x1’=x1 only in L1 will not eliminate the phi
interference (i.e., we still need to insert a copy in L2 to eliminate the interference).
This is because the target of the new copy will interfere with x2. Now since x1 is not
in LiveOut[L2] we can eliminate the phi interference by inserting a new copy x2’=x2
only in L2 (i.e., a copy is not needed in L1). Notice that we used LiveOut sets to
eliminate interference among phi source resources. To eliminate interferences
between the target resource and a source resource in a phi instruction we use LiveIn
and LiveOut sets (see the “lost-copy” problem and the “swap” problem discussed
later in the section). The complete algorithm for eliminating phi resource
interferences based on data flow and interference graph updates is given in the
appendix. A unique aspect of this algorithm is that any copy it places cannot be
eliminated by the standard interference graph based coalescing algorithm (assuming
there are no dead phi instructions). In other words, the source and target resources of
the copies inserted by this method will interfere when we leave the SSA form. Also,
the algorithm precisely updates both the interference graph and liveness information.
Note that this algorithm does not ensure that the number of copies inserted to
eliminate phi resource interference is minimum. (We believe that the problem of
ensuring a minimum number of copies inserted to correctly eliminate phi instructions
is still to be formulated, e.g. based on a static count or a dynamic count, and remains
unresolved yet.)

Translating Out of Static Single Assignment Form 201

The first step in the algorithm is to initialize the phi congruence classes such that
each resource in the phi instruction belongs to its own congruence class. These classes
will be merged after eliminating interferences among them. The crux of the algorithm
is to first check whether for any pair of resources, xi:Li and xj:Lj in a phi instruction,
where 0 <= i, j <= n, n is the number of phi resources operands, and xi!= xj, there
exists resource yi in phiCongruenceClass[xi], yj in phiCongruenceClass[xj] and yi
and yj interfere. If so we will insert copies to ensure that xi and xj will not be put in
the same phi congruence class. Consider the case in which both xi and xj are source
resources in the phi instruction.7 There are four cases to consider to insert copies
instructions for resources in the phi instruction.

• Case 1. The intersection of phiCongruenceClass[xi] and LiveOut[Lj] is not
empty, and the intersection of phiCongruenceClass[xj] and LiveOut[Li] is empty.
A new copy, xi’=xi, is needed in Li to ensure that xi and xj are put in different
phi congruence classes. So xi is added to candidateResourceSet.

• Case 2. The intersection of phiCongruenceClass[xi] and LiveOut[Lj] is empty,
and the intersection of phiCongruenceClass[xj] and LiveOut[Li] is not empty. A
new copy, xj’=xj, is needed in Lj to ensure that xi and xj are put in different phi
congruence classes. So xj is added to candidateResourceSet.

• Case 3. The intersection of phiCongruenceClass[xi] and LiveOut[Lj] is not
empty, and the intersection of phiCongruenceClass[xj] and LiveOut[Li] is not
empty. Two new copies, xi’=xi in Li and xj’=xj in Lj, are needed to ensure that xi
and xj are put in different phi congruence classes. So xi and xj are added to
candidateResourceSet.

• Case 4. The intersection of phiCongruenceClass[xi] and LiveOut[Lj] is empty,
and the intersection of phiCongruenceClass[xj] and LiveOut[Li] is empty. Either
a copy, xi’=xi in Li, or a copy, xj’=xj in Lj, is sufficient to eliminate the
interference between xi and xj. However, the final decision of which copy to
insert is deferred until all pairs of interfering resources in the phi instruction are
processed.

7

The situation is exactly the same when one of xi or xj is a target resource except
that we use both LiveIn and LiveOut sets to decide copy placement.

202 V.C. Sreedhar et al.

By deferring copy placement in Case we avoid placing redundant copies. To see this
consider the TSSA program shown in Figure 6. Initially phiCongruenceClass[x1] =
{x1}, phiCongruenceClass[x2] = {x2}, and phiCongruenceClass[x3] = {x3}. The
LiveOut sets for L1, L2, and L3 are shown in the figure. Since the live ranges of x1
and x2 interfere new copies are needed to break the phi resource interference. We can
see that x1 is not in LiveOut[L2] and x2 is not in LiveOut[L1]. Therefore, we can
eliminate the phi resource interference between them by inserting a copy either in L1
or in L2. Now rather than deferring the copy insertion let us insert a new copy x2’=x2
in L2. Since x1 and x3 also interfere with each other, copies are needed to eliminate
the interference on this pair of resources. Here we can see that x1 appears in
LiveOut[L3], so we must insert a new copy x1’=x1 in L1 to eliminate the phi resource
interference between them. By inserting this copy in L1 we can immediately see that
the copy x2’=x2 inserted earlier is redundant. Therefore, to avoid inserting redundant
copies we defer copy insertion for Case 4 and keep track of resources for which we
have not resolved copy insertion in a map called the unresolvedNeighborMap. Each
time the copy insertion is deferred (unresolved) for a pair of resources xi and xj, we
add xi to the set unresolvedNeighborMap[xj] and xj to the set unresolved-
NeighborMap[xi]. Once all the resources in the phi instruction are processed, we
handle the unresolved resources. We pick resources from the map in a decreasing size
of unresolved resource set. For each resource x that is picked up from the map, we
add x to candidateResourceSet if x contains at least one unresolved neighbor. We also
mark x to be resolved and add x to candidateResourceSet. Finally, when all the maps
are processed, it is possible a resource x that was marked as resolved may now
contain all its neighbors to be marked as resolved. If this is the case we remove x
from candidateResourceSet.
Once all resources that need copies are put in the candidateResourceSet, we insert
copies for these resources as in Method I or Method II. We also update the liveness
information, the interference graph, and the phi congruence class. The details of these
updates are given in the appendix. Next we illustrate the application of our algorithm
to two problems, the ‘lost-copy’ problem and the ‘swap’ problem, discussed in [2].

The Lost-Copy Problem. Figure 7 illustrates the lost copy problem. Figure 7(a)
shows the original code. Figure 7(b) shows the TSSA form (with copies folded). If we
use the algorithm in [7] to eliminate the phi instruction, the copy y=x would be lost in
the translation.

Translating Out of Static Single Assignment Form 203

Let us apply our algorithm to this problem. From Figure 7(b) we can see that x2
and x3 interfere, x2 is in LiveOut[L2], and x3 is not in LiveIn[L2]. So a new copy
x2=x2’ is inserted in L2 for x2. Once we do this as shown in Figure 7(c) we can
simply eliminate the phi instruction after replacing references to all its resources by a
representative resource.

The Swap Problem. Let us apply the algorithm to the swap problem in [2] shown in
Figure 8. The original code for the swap problem is given in Figure 8(a), and the
corresponding CSSA form is given in Figure 8(b). After we perform copy folding on
the CSSA form, we get the TSSA form shown in Figure 8(c).

Consider the TSSA form shown in Figure 8(c). We first initialize the phi
congruence classes of resources referenced in the two phi instructions by putting each
resource in its own class (e.g., phiCongruenceClass[x1]={x1},
phiCongruenceClass[x2]={x2}, etc.) Next, using liveness analysis we can derive
LiveOut[L2]={x2,y2} and LiveIn[L2]={x2,y2}. Now consider the first phi
instruction, where we can see that x2 and y2 interfere with each other. Note that the
use of x2 in the second phi instruction occurs at the end of L2 (see Section 3 for
details). Also, notice that y2 is in LiveIn[L2] and that x2 is in LiveOut[L2]. Therefore
we will insert two copies, one for x2 and one for y2. The resulting program is shown
in Figure 9(a). After inserting the copies we incrementally update the LiveIn set, the
LiveOut set and the interference graph to reflect the new changes. The new
LiveIn[L2]={x2’,y2} and LiveOut[L2]={x2,y2’}. We will also update and merge the
phi congruence classes for resources in the phi instruction so that resources x1, x2’,
and y2’ are put in the same phi congruence class. Now consider the second phi
instruction and notice that x2 and y2 still interfere. We can see that x2 is not in
LiveIn[L2] and y2 is not in LiveOut[L2]. So only one copy is needed to eliminate the
phi interference. The resulting program is shown in Figure 9(b). We can see that we
have inserted only three copies and all three copies are essential.

204 V.C. Sreedhar et al.

5. SSA Based Coalescing

Once phi instructions have been eliminated the algorithms given in [7] and in [2] rely
on Chaitin’s coalescing algorithm to eliminate as many redundant copies as possible.
Consider the CSSA form shown in Figure 10(a). Since none of the resources within
phi instructions interferes with each other, we can eliminate the phi instruction by
using the phi congruence property. The resulting program is shown in Figure 10(b).
Now let us apply Chaitin’s algorithm to eliminate the copy x=y [3]. Since x and y
interfere with each other this copy cannot be eliminated.

In this section we present a new CSSA-based coalescing algorithm that will allow
us to eliminate the copy x1=y1. The key intuition behind our algorithm is that we can

Translating Out of Static Single Assignment Form 205

eliminate a copy x=y even when their live ranges interfere, so long as the coalesced
live range does not introduce any phi resource interference.

Let x=y be the copy that we wish to eliminate. Assume that they are not in the
same phi congruence class. (It is trivial otherwise.) There are three cases to consider:
• Case 1: phiCongruenceClass[x]=={} and phiCongruenceClass[y]=={}. This

means that x and y are not referenced in any phi instruction. The copy can be
removed even if x and y interfere.

• Case 2: phiCongruenceClass[x]=={} and phiCongruenceClass[y]!={}. If x
interferes with any resource in (phiCongruenceClass[y]-y) then the copy cannot
be removed, otherwise it can be removed. The situation is similar but opposite for
the case where phiCongruenceClass[x]!={}and phiCongruenceClass[y]== {}.

• Case 3: phiCongruenceClass[x]!={} and phiCongruenceClass[y]!={}. The copy
cannot be removed if any resource in phiCongruenceClass[x] interferes with any
resource in (phiCongruenceClass[y]-y) or if any resource in
phiCongruenceClass[y] interferes with any resource in (phiCongruenceClass[x]-
x), otherwise it can be removed.

Consider the example shown in Figure 10(a). From the figure we can see that phiCon-
gruenceClass[x1] = {x1, x2, x3} and phiCongruenceClass[y1]={y1,y2,y3}. We can
see that x1 and y1 interfere, but we can still eliminate the copy using Case 3. After
eliminating the copy, x1 = y1, the two phi congruence classes are merged. Since none
of resources in the phi congruence class interferes with each other we can eliminate
the phi instruction by replacing all references to resources in the merged phi
congruence class with a representative resource. The resulting program no longer has
the copy, x = y. Our heuristic for handling Case 3 is conservative but safe. One can
easily enhance this heuristic so that more copies can be eliminated while still ensuring
that the phi congruence property is satisfied.

6. Experimental Results

To demonstrate the effectiveness of our approach we implemented all three methods
for translating out of SSA form. We also implemented our CSSA based coalescing.
The experimental results are summarized in Table 1. We ran our experiments on a
number of procedures taken from SPECint95 and other application suites. Here we
present our results for a set of ten representative procedures. Nine out of the ten
procedures are from the SPECint95 suite, and one is from operating system source
code. One typical characteristic of the ten procedures is that they are large. In our
compiler, optimizations, such as global code motion and common sub-expression
elimination, introduce phi resource interferences. All of the dead phi instructions have
been pruned as part of our SSA construction phase.

Note that reducing the compilation time and space usage is a key motivation to
develop the third method to translate out of SSA form. For all three methods we
present two kinds of data; the first kind represents space usage and the second kind
represents running time. In Table1 BT indicates the number of copies prior to leaving
the TSSA form, and AT indicates the number of copies after translating to the CSSA
form. The difference between AT and BT gives the number of copies introduced
during the translation of the TSSA form to the CSSA form. For the set of benchmarks

206 V.C. Sreedhar et al.

that we experimented with we found that during the translation Method II introduces
72.1% fewer copies than Method I, and Method III introduces 89.9% fewer copies
than Method I. The number of copies inserted during the translation process is an
indication of space usage. Thus, we can see that both Method II and Method III
outperform Method I in terms of space efficiency.

AC in the table indicates the number of copies that exist after applying our CSSA
based coalescing to the CSSA form. For both Method II and Method III we did not
recompute the data flow information and the interference graph, but relied on the
incremental update performed by the two methods. Since, for Method II, the
interference graph update is conservative, after coalescing there are, on average,
29.1% more copies than for Method I. Interestingly, after coalescing there are 8.6%
fewer copies using Method III compared to Method I. It is important to note that for
Method III, the subsequent coalescing does not eliminate any copy instruction
introduced during the TSSA-to-CSSA translation, but instead it eliminates only

Table 1: Empirical result for the three methods.

Procedure
Name

BT Meth ods AT AT-BT AC DF/IG
(secs)

TT
(secs)

TC
(secs)

Total
(secs)

Part_delete
(vortex)

86 I
II

III

 112
 100
 92

 26
 14
 6

 92
 99
 91

0.08
0.09
0.09

0.01
0.01
0.01

0.02
0.01
0.02

0.11
0.11
0.12

Yyparse
(gcc)

723 I
II

III

 918
 761
 738

 195
 38
 15

 140
 162
 139

2.63
2.50
2.64

0.04
0.05
0.03

0.50
0.43
0.42

3.17
2.98
3.09

Yylex
(perl)

1060 I
II

III

2901
1309
1134

1841
 249
 74

 590
 652
 447

3.51
2.77
2.93

0.28
0.60
0.22

2.05
0.78
0.78

5.84
4.15
3.93

Yylex
(gcc)

1573 I
II

III

4632
1825
1648

3050
 252

 75

 660
 670
 493

6.37
5.30
5.86

0.60
0.90
0.38

3.78
1.61
1.62

10.75
7.81
7.86

Reload
(gcc)

344 I
II

III

1378
 802
 525

1034
 458
 181

 410
 675
 385

3.56
2.73
3.15

0.15
0.74
0.25

0.87
0.35
0.27

4.58
3.82
3.67

Iscaptured
(go)

61 I
II

III

 194
 138
 89

 133
 77
 28

 55
 104

 57

0.12
0.11
0.12

0.01
0.03
0.02

0.04
0.02
0.02

0.17
0.16
0.16

Cse_insn
(gcc)

396 I
II

III

1476
 698
 492

1080
 302

 96

 367
 544
 344

3.05
2.61
2.85

0.18
0.53
0.18

0.69
0.32
0.27

3.92
3.46
3.30

Eval
(perl)

1375 I
II

III

3224
1546
1456

1849
 171

 81

 619
 717
 624

7.14
4.45
5.80

0.40
0.82
0.20

2.50
1.05
1.13

10.04
6.32
7.13

Ttin
(o/s code)

539 I
II

III

2389
1369
 761

1850
 830
 222

 826
1201
 600

3.44
2.43
2.59

0.20
2.21
0.87

1.41
0.30
0.18

5.05
4.94
3.64

load_data
(m88ksim)

163 I
II
III

 183
 163
 163

 20
 0
 0

 53
 53
 53

0.11
0.10
0.11

0.01
0.01
0.01

0.04
0.03
0.04

0.16
0.14
0.1
6

%improve
ment8

I
II
III

 *
 *
 *

 *
72.1
89.9

 *
-29.1
 8.6

 *
 *
 *

 *
 *
 *

 *
*
*

 *
13.1
15.1

redundant copies that were present prior to the translation. Our experimental results

8

Percentage improvement is first calculated with respect to Method I for each
procedure and is then averaged over all procedures.

Translating Out of Static Single Assignment Form 207

corroborate this behavior (in many cases the AC value is less than the BT value for
Method III). After copy elimination, Method II clearly has the most copies left, and
Methods I and III have comparable numbers of copies left in most of the cases. But
for procedures yylex(gcc), yylex(perl), and ttin (o/s code). Method III is very effective
in terms of reducing the number of copies in final code (an improvement of more than
24%). One reason for this dramatic improvement is because the coalescing algorithm
has to eliminate more copies in Method I than in Method III. The copy elimination
order is important for Method I since it impacts the total number of copies that are
eliminated. Since Method III places only the copies that cannot be eliminated by
coalescing, it is less affected by the elimination order. In summary, we conclude that
Method II and Method III have better space efficiency than Method I, and Method III
is the most effective in terms of reducing the number of copies in the final code.

Next we will discuss the running time for all three methods. The column DFA/IG
indicates the time for computing the data flow information and the interference graph.
The column TT indicates the time for translating the TSSA form to the CSSA form,
and TT also includes the time to incrementally update data flow information and
interference graph for the relevant methods. Column TC indicates the time for our
CSSA based coalescing. Finally, the last column indicates the summation of DFA/IG,
TT, and TC.

From the table we can see that, for all three methods computing the data flow
information and the interference graph dominates their overall running time. The time
in DFA/IG tends to be longer for Method I because of a large number of extra copies
inserted during TSSA-to-CSSA translation. Since Method III also tracks additional
live-in sets, it takes more time than Method II for computing the data flow
information. Method II needs to update data flow sets and interference graph for a
relatively large number of copy instruction inserted during its TSSA-to-CSSA
translation, so it usually requires the longest time under TT. Compared to the other
two methods, the copy elimination in Method I has many more copy instructions to
eliminate, and thus, Method I takes a longer time under TC.

By examining the total running time, Method III performs significantly better than
Method I in more than half of the cases and comparably in the rest. On average it is
about 15% faster than Method I. Although Method II has the fastest running time in
some cases, this method is not very effective in reducing the number of copies in the
final code.

7. Discussion and Conclusion

In this paper we presented a new framework for translating out of SSA form and for
eliminating redundant copies. Previous work that are most relevant to ours are due to
Cytron et al. [7] and Briggs et al. [2]. Both methods pessimistically insert copies for
all the source resources of a phi instruction. Our Method I and the previous two
methods rely on a subsequent coalescing phase to eliminate redundant copies. Our
experimental results indicate that pessimistically inserting copies increases the
space/time requirements of the algorithm.

Cytron et al. never insert copies for the target resource of a phi instruction. The
work in [2] showed that this leads to incorrect code generation in certain cases when a
transformation, such as value numbering, is performed on the SSA form. Briggs et al.

208 V.C. Sreedhar et al.

[2] illustrated two examples, the “lost copy” problem and the “swap” problem, where
the original Cytron et al. algorithm would fail [7]. They then proposed algorithms to
handle both of these problems. Unlike our Method I, they judiciously place copies for
the target resource of a phi instruction to handle the two special cases. The solution to
the swap problem requires ordering on copy insertion, and the solution to the lost
copy problem requires data flow live out information. To summarize their algorithm,
basic blocks in the control flow graph of a program are visited in a preorder walk over
the dominator tree. Each basic block is then iterated to replace uses in phi instructions
and other instructions with any new names previously generated during the preorder
walk. A list of copies that are needed in this basic block are built and inserted in the
order determined by the algorithm that handles the swap problem. Finally, as each
copy is inserted, an algorithm to handle the lost copy problem is invoked (which uses
live out information to ensure that a needed copy is not lost).

We presented a uniform framework for eliminating phi instructions. Our
framework is based on two important properties: (1) the phi congruence property, and
(2) the property that none of the resources in a phi congruence class interfere. We use
liveness analysis and an interference graph to eliminate phi instructions. In [2] the
authors remark that they reduced the problem of eliminating phi instruction to a
scheduling problem. In our framework we have reduced the problem of eliminating
phi instructions to a coloring-based register allocation problem [3]. In this paper we
presented one strategy for spilling copies, where copies for source resources of a phi
instruction are inserted in the predecessor basic blocks, and a copy is inserted for the
target resource in the same basic block as the phi instruction. One can envision other
spilling strategies that can further reduce the number copies needed to correctly
eliminate phi instructions. Note that, unlike the Briggs et al. algorithm, our framework
does not use any structural properties of the control flow graph or the dependence
graph induced by the SSA names (the SSA graph) to ensure that the copies are placed
correctly. We also do not visit the basic blocks in any particular order to ensure that
copies are placed correctly. Another unique aspect of our framework is the notion of
phi congruence property of the CSSA form. We exploited this property to translate
TSSA form to CSSA form by breaking interferences among resources in a phi
congruence class, and then eliminating phi instructions in the CSSA form. Our new
CSSA-based algorithm also uses phi congruence classes to correctly and aggressively
eliminate copies.

Finally, it is important to note that although our framework handles all control flow
structures including loops with multiple exits and irreducible control flow and does
not require any explicit control flow structure for correctness, transformations, such as
edge splitting, help reduce the number of copies that are inserted in our phi instruction
elimination phase. It also helps remove more copies during our CSSA-based
coalescing. We have also observed that visiting basic blocks in a certain order helps
improve the effectiveness of both the phi instruction elimination phase and the copy
elimination phase. These issues are part of future work and beyond the scope of this
paper.

Translating Out of Static Single Assignment Form 209

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

2. P. Briggs, K. Cooper, T. Harvey, and Taylor Simpson. Practical improvements to the
construction and destruction of static single assignment form. Software-Practice and
Experience, 28(8):859-881, July 1998.

3. G. J. Chaitin, Register allocation and spilling via graph coloring. SIGPLAN Notices
17(6):98-105, June 1982. Proc. of the ACM SIGPLAN ‘82 Symp. on Compiler
Construction.

4. F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo, and P. Tu, “A New Algorithm for Partial
Redundancy Elimination based on SSA Form,” Proc. of the 1997 ACM SIGPLAN Conf.
on Programming Language Design and Implementation, pp. 273-286, 1997.

5. C. Click. Global Code Motion Global Value Numbering. SIGPLA Notices, 30(6):246-
257, June 1995. Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation.

6. R. Cytron and R. Gershbein. Efficient accommodation of may-alias information in SSA
form. SIGPLAN Notices, 28(6):36-45, June 1993. Proceedings of the ACM
SIGPLAN’93 Conference on Programming Language Design and Implementation

7. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451-490, October 1991.

8. A. Leung and L. George. Static Single Assignment Form for Machine Code. SIGPLAN
Notices, 34(5):204-214, May 1999. Proceedings of the ACM SIGPLAN’99 Conference
on Programming Language Design and Implementation.

9. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, CA, 1997.

10. P. Pineo and M. L. Soffa. A practical approach to the symbolic debugging of parallelized
code. Proceedings of International Conference on Compiler Construction, April 1994.

11. V. C. Sreedhar and G. R. Gao. Computing φ-nodes in linear time using DJ graphs.
Journal of Programming Languages, 13(4):191-213, 1996.

12. M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, 13(2):181-210, April 1991.

Appendix: Complete Algorithm for Method III

Algorithm A: Algorithm for eliminating phi resource interferences based on data flow and
interference graph updates.
eliminatePhiResourceInterference()
Inputs: instruction stream, control flow graph (CFG), LiveIn and LiveOut sets, interference

graph
Outputs: instruction stream, LiveIn and LiveOut sets, interference graph, phi congruence

classes
{
1: for each resource, x, participated in a phi

phiCongruenceClass[x] = {x};
2: for each phi instruction (phiInst) in CFG {

phiInst in the form of x0 = f(x1:L1, x2:L2, ..., xn:Ln);
L0 is the basic block containing phiInst;

3: Set candidateResourceSet;

210 V.C. Sreedhar et al.

for each xi, 0 <= i <= n, in phiInst
unresolvedNeighborMap[xi] = {};

4: for each pair of resources xi:Li and xj:Lj in phiInst, where 0 <= i, j <= n and xi != xj,
such that there exists yi in phiCongruenceClass[xi], yj in phiCongruenceClass[xj],
and yi and yj interfere with each other, {
Determine what copies needed to break the interference between xi and xj using the

four cases described in Section 4.3.
}

5: Process the unresolved resources (Case 4) as described in Section 4.3.
6: for each xi in candidateResourceSet

insertCopy(xi, phiInst);
7: // Merge phiCongruenceClass’s for all resources in phiInst.

currentphiCongruenceClass = {};
for each resource xi in phiInst, where 0 <= i <= n {

currentphiCongruenceClass += phiCongruenceClass[xi];
 Let phiCongruenceClass[xi] simply point to currentphiCongruenceClass;

}
}

8: Nullify phi congruence classes that contain only singleton resources.
}
insertCopy(xi, phiInst)
{ if(xi is a source resource of phiInst) {

for every Lk associated with xi in the source list of phiInst {
Insert a copy inst: xnew_i = xi at the end of Lk;
Replace xi with xnew_i in phiInst;
Add xnew_i in phiCongruenceClass[xnew_i]
LiveOut[Lk] += xnew_i;
if(for Lj an immediate successor of Lk, xi not in LiveIn[Lj] and not used in a phi

instruction associated with Lk in Lj)
LiveOut[Lk] -= xi;

Build interference edges between xnew_i and LiveOut[Lk];
}

} else {
// xi is the phi target, x0.
Insert a copy inst: x0 = xnew_0 at the beginning of L0;
Replace x0 with xnew_0 as the target in phiInst;
Add xnew_0 in phiCongruenceClass[xnew_0]
LiveIn[L0] -= x0;
LiveIn[L0] += xnew_0;
Build interference edges between xnew_0 and LiveIn[L0];

}
}

	1.	Introduction
	2.	Motivation and Phi Congruence Class
	3.	Liveness and Interference
	4.	Translating TSSA Form to CSSA Form
	4.1	Method I: Naive Translation
	4.2	Method II: Translation Based on Interference Graph Update
	4.3	Method III: Translation Based on Data Flow and Interference Graph Updates

	5.	SSA Based Coalescing
	6.	Experimental Results
	7.	Discussion and Conclusion
	References
	Appendix: Complete Algorithm for Method III

