
3D Utopia

David M. Raber

April 29, 2004

Abstract

My techlab project will journey into the world of 3D graphics programming

using the simple yet sophisticated language C++ and the OpenGL (Open Graphics

Library). By the end of the year, I plan to have a fully functional 3D interactive

world with which users can explore a complex environment. Although the project

is still in a stage of infancy, I have high hopes for the effects that I can create and

the amount of graphics programming I can learn over the course of this year.

1 Introduction

Computer graphics is a rapidly growing field in which many computer programmers find

their passion. The technology provided by computers allows researchers and programmers

to develop extensive simulations of the real world, which in turn can be reapplied to

everyday situations. With computers, we can model the motion of water in a river and

see what effects adding a dam to that river could have. We could use physics to simulate

a car crash, and the results could help designers learn what potential problems exist and

1



solve them more quickly, efficiently, and safely. Computer graphics can save industries

around the world billions of dollars by simulating situations without forcing companies

to waste countless months or years testing their projects in the real world.

2 Background

Terrain generation has always been an important real world application of computer

graphics. By using high-tech software, such as Terragen [2], computer programmers

and researchers attempt to create realistic models of surrounding terrain. Terragen uses

sophisticated algorithms to create the appearance of a real world environment for use in

television, movies, and pure beauty.

2.1 Simplification

Naturally, the algorithms used by Terragen are extremely complex and difficult to under-

stand, so first let us explore a simpler algorithm for creating terrain. One method used

by many beginning programmers is the height-mapping method. This method involves

creating an array full of points and assigning each point a value for its height. Then,

the program can connect the points to form triangles - creating the appearance of sloped

terrain. The downside to this method is that it is not very flexible. Since coordinate

points can only have integral (x,y) values, the model will not extremely realistic.

2



One slight alteration of this method would be the vertex array method. This method

entails making two arrays, one to hold all of the vertices used to map the terrain and the

other which holds all of the various ways these vertices are connected. The second array

could, for example, connect vertices 1, 2, and 3 to make a triangle in three-dimensional

space. The disadvantage of this method is that usually more space will be required to

store the data required to make the scene.

3



Each method has its own advantages and disadvantages, and both are used today to

create realistic models of terrain.

2.2 OpenGL v. DirectX

OpenGL is commonly used in C or C++ programs to produce graphical models of objects

of various problems in the real world. The graphics library OpenGL is used by many

commercial businesses, especially those in the computer game industry. The biggest

advantage of OpenGL is its ability to port easily from one type of system to another.

OpenGL’s cross-platform capabilities make it an ideal selection for gaming industries that

want their programs to be available to all computer users, rather than just Windows users

or Linux users. The downside, however, is that OpenGL lacks some advanced capabilities

that other libraries offer.

4



DirectX is a Windows based library written by Microsoft for the purpose of graphical

applications. DirectX is implemented into many games for its high-end three-dimensional

simulation capabilities. One advantage DirectX has over OpenGL is that most applica-

tions written in DirectX code run faster than those written in OpenGL code for Windows.

Since DirectX cannot be used on other platforms, however, the library is not optimal for

those who want to work on two different operating systems.

3 The Mathematics of Terrain Generation

3.1 Lighting

Lighting in terrain generation applications is important if a realstic simulation is desired.

Terrain in the real world looks different during the day than it looks at night, and terrain

in shadow appears darker than terrain in direct sunlight. In order to understand how

programmers tackle the problem of realistic lighting in their simulations, one must first

understand the following terms.

1. Plane - The set of all points perpendicular to a single vector. It can be expressed

as the equation Ax + By + Cz = D.

2. Normal - The vector perpendicular to a plane. It can be expressed as < A,B,C >

from the above equation.

3. Vertex Normal - The vector that is the normal for a vertex rather than a plane.

To calculate this vector, we add the normal vectors of the surrounding planes. See

Figure 1.

5



Figure 1

This image is a picture of the terrain drawn in wireframe. The red lines are the normal

vectors for each vertex.

References

[1] I would like to thank Mr. Hyatt for his great tutorial on LaTex which I will use to

create this paper.

[2] Terragen is a terrain modelling program that looks quite interesting in

many aspects and could prove useful in the future. The address is

http://www.planetside.co.uk/terragen/

[3] NeHe’s tutorial site is what introduced me to advanced OpenGL program-

ming. His tutorials are extremely helpful and comprehensive. The address is

http://nehe.gamedev.net

6



[4] Another important programmer whose work influeced this paper is Dragonslayer at

http://www.dragonslayer.dk/gamedev/gamedev.html. His website taught me several

things about octrees and frustum culling that were important to understanding the

intricacies of terrain generation.

7


