
A Robust and Portable Software Development

Kit for Multi-Dimensional Graphical Applications

Michael Sullivan

TJHSST Class of 2004

January 2003



0.1 Introduction

Human beings see in two dimensions. Two dimensional data is input by each
eye and the brain interprets three dimensional (3D) images through a triangula-
tion process. Over the past 15 years, computer engineers and software designers
have developed complex systems to perform the related task of projecting three
dimensional environments onto a two dimensional computer monitor. The com-
putational reciprocal of biological triangulation is now called a three dimensional
real-time rendering environment, or 3D engine.

The significance of three dimensional computer graphics far surpasses the
simple emulation of biological sight, however. Interactive graphics can be used
to synthesize abstract entities, such as objects with no inherent geometry (sta-
tistical data) and mathematical surface representations in greater than four
dimensions through varying color plates (Foley, et al., 1996). In addition to
providing a real time simulation of depth in two dimensional space, 3D engines
can also provide a realistic simulation of physical interactions and dynamics.
Such physics and dynamics engines serve the dual purpose of increasing the
realism of a computer depiction of real world events and providing a medium
for scientific and academic visualization and research.

Historically, 3D applications have had to utilize expensive proprietary sys-
tems to render 3D scenes and handle physics and dynamics, while providing
user input, network support, and data storage schemes separately. This long,
expensive process has, in the past, prevented all but the largest companies from
developing programs on a 3D platform. As a result, many software develop-
ment kits (SDKs) have arisen in recent years to simplify the three dimensional
application building process. Software development kits exist to serve various
purposes. Low-level kits serve as an overlay or extension to a graphics library
(such as OpenGL or Direct3d) for software developers. Other SDKs are de-
signed for user access at a medium level, where program code is shared between
the SDK and user defined code. High-level SDKs are more like scripting (or
modding) interfaces, where a user need not create code, but rather controls a
fully coded environment through simple scripts, macros, or configuration files.

There are advantages and disadvantages to each type of SDK. Lower level
kits tend to require more knowledgeable developers, who are well versed in what-
ever programming language the kit supports. Development with such kits tends
to be slower and more difficult than on higher level systems, but the software
developer is given greater control over the end product. Higher level kits tend
to simplify and accelerate application development, but at the cost of developer
control. As a result, current SDKs tend either to be too complicated for many
potential application developers, or too rudimentary and simplified to create
powerful, robust programs. The technical demands or limited applicability of
currently available SDKs leave many applications that could aid and clarify sci-
entific research difficult to develop. This project aims to develop a robust and
portable SDK which is simple enough to be used by educators and students
who are not experienced programmers, yet powerful enough to produce multi-
dimensional programs that are not limited in scope or function. Elements of

1



the Software Development Kit discussed in this paper were coded in C/C++ on
top of the OpenGL Graphics Library (OpenGL, 2002). Currently all features of
the SDK are supported under Windows 98, Windows NT/2000, Windows XP,
and Linux.

This research report discusses the modular framework of the SDK being
developed and presents some of the features that have been coded to date.
The aim is not to document all of the kits features but to provide the reader
with an overview of the development process and an understanding of how
the SDK handles some of the key elements of modeling physical interactions
and dynamics in a multi-dimensional environment. The modular framework of
the SDK is discussed, along with an overview of the individual modules and
libraries that are available to developers. Important engine elements, such as
the space partitioning scheme and collision detection method are discussed as
well. However, descriptions of many specific features of the built-in modules
and libraries have been omitted due to length limitations.

0.2 Modular Architecture

A module-based application is composed of many independent components, each
of which carries out a specific function alone or with the help of shared libraries.
Modular architecture combines the inherent power of a static, pre-existing core
with the scalability of a user-defined program (Gamma, et al.,1995). Standard
(built-in) libraries provide tools to handle complex issues (such as texture map-
ping and collision detection), while allowing the developer impressive flexibility.
The modular components of the SDK are as follows.

1. A central root which acts as the engines central nervous system, passing
messages to the other modules.

2. A user-defined rendering module which handles the output to the screen
every frame.

3. A user-defined initiation module, called at startup, that initializes the
variables, libraries, and structures which comprise the application. This
module is also called upon shutdown and deconstructs the components of
the application in order to avoid memory leaks.

4. An optional user-defined input module which is called every frame to parse
and handle input from peripheral devices (keyboard, mouse, joystick, etc.)
for the application.

5. An optional user-defined console module which provides direct communi-
cation between the user and the application.

Figure 1 presents a schematic of the SDKs modular design. All modules are
optional, meaning that if they are not redefined by the developer, the default

2



(built-in) code will be provided by the SDK. However, in the case of the Con-
sole and Input Modules, the developer may purposefully omit these functions
from appearing in the application being developed and the system will still be
fully functional. Some iteration of the Initialization and Rendering modules is
required, whether they are the built-in modules or redefined by the developer.

Various standard libraries are included with the core engine, including dy-
namic data structures (for robust arrays and character strings), mathematic
functions for multi-dimensional space, n-dimensional vectors and matrices, as
well as optional sound support. These libraries are available to developers (prob-
ably those interested in middle level development), though they are not required
for software development (only the OpenGL library is required). This approach
retains the flexibility and power of a standard (pre-existing) application archi-
tecture without restricting the functionality and scope of the end product.

0.2.1 The Standard Modules

If a developer does not explicitly define (or selectively redefine) a module, the
SDK has a built-in set of standard modules which should accommodate most
applications. In theory, a high-level user could develop an entire application
using only the standard modules and libraries (through scripts and configura-
tion files). This ideal solution for those with limited programming skills will

3



become increasingly feasible as additional modules and libraries are developed
and contributed to the SDK by the author and other developers. The standard
modules include the following features.

1. A Rendering Module which supports an orthogonal matrix (for two di-
mensional graphs or an overlay to a three dimensional scene) as well as a
three dimensional projection matrix. Various time-checks are performed
every frame (for time-tempered movement as well as user defined time
queues or tables), and the FPS (frames per second) are recorded. Op-
tional debugging features include the running display of screen position
(x, y, z) and frames per second.

2. An Initialization Module which is called at startup. The initialization
module handles 3D scene (map) files, and passes automatic configuration
scripts to the console module. The syntax for the map files is designed to
be extremely user friendly, unlike the .bsp files supported by other three
dimensional SDKs. Commands are passed to the initialization module
by placing a # character before a line. To create and map a geometric
figure, Bezier curve, or height map, the only elements needed are a texture
name, and the figures placement coordinates. All other elements of a
mapped figure are handled by the built-in Texture Mapper (to be discussed
later). Comments within a map file follow the ANSI-C standards any
code following a double slash (//) or placed between two slash-star tags
(/* and */) is not interpreted by the module. An in-depth discussion of
the specific commands (code following a #) and the supported geometric
shapes (curves and height maps included) is beyond the scope of this
paper, due to length constraints.

3. A console module which interprets user commands and scripts. Although
this module is optional, meaning that it is not necessary for the creation
of an application, it is recommended. The gateway to the console module
is a required Submit function, which handles any plain-text submission,
and returns either a success (true) or failure (false) to the location which
called the console. The built-in console supports many features, such
as key mapping, script execution, and system variable manipulation, if
allowed. However, an in-depth examination of these specific features is
left for another time.

4. 4) A module to handle a users input from peripheral devices. Currently,
the built-in user interface module detects (for all supported platforms) the
pointing devices (mouse, trackball, joysticks) position, state (mouse clicks,
etc.), and can react appropriately to mouse movement. Also, keyboard
events (both continuous and instantaneous) are handled. Although the
intention is for the user to define the actions taken when various inputs
are detected, a set of default actions has been provided. A high-level user
can alter the actions taken by the user input module by executing scripts
(using the commands bind and unbind).

4



0.2.2 The Standard Libraries

The backbone of any 3D application is its graphical library. For this reason,
OpenGL is automatically included in the SDK. In addition to the OpenGL
library (which is required), various other built-in libraries are available to de-
velopers. These optional libraries include mathematically intense areas which
are commonly used in three dimensional modeling, as well as other classes and
structures which are designed to be generally useful when designing a full fea-
tured application. The standard libraries include the following features.

1. A 3D math library which contains mathematical elements that are com-
monly used when dealing with three dimensional space. Such features
include support for multi-dimensional matrices, and matrix algebra (de-
terminants and basic mathematical operations).

2. A multi-dimensional vector library which has content tailored to a 3D
environment. All vector operations are supported (addition, subtraction)
as well as the dot product, cross product, and various controls over the
magnitude and direction of a given vector. Other, more specific vector
features are supported, such as the determination vectors normal to a
surface, and vector transformations due to rotation around an arbitrary
axis.

3. Several dynamic memory structures are supported through a built-in li-
brary. Templated dynamic arrays are available to provide resizable, reusable
storage, and an expanded dynamic string class can ease the formation of a
robust and efficient console module. Many specific features exist in both
classes, although they will not be covered due to the intended brevity of
this paper.

4. An optional sound library is available to developers who choose to add
asynchronous or synchronous sound to their applications. Built on top of
the FMOD sound library, the built-in sound library provides intuitive and
user friendly support for the most common audial needs (FMOD, 2003).
The sound library supports 3D sound, and is able to implement many
popular types of music compression (mp3, ogg vorbis, wma, and more).

0.3 Portability

One of the most difficult and time consuming aspects of application development
is making a program run on a variety of platforms. Due to the number of
educational institutions that implement both Microsoft Windows and a version
of Linux, support for both of these platforms is imperative for a fully functional
product. Also, for compilable utilities (such as an SDK), support for various
compilers is necessary, as well.

By detecting certain essential dynamic linked libraries (DLLs) that are com-
mon to all versions of Windows, the SDK is able to determine whether or not

5



it is being compiled on a Microsoft owned operating system. If these DLLs
are not detected, it is assumed that the parent operating system supports X
Window System, the standard graphical system for Linux distributions. After
the operating system is detected, preprocessor directives placed within the SDK
remove all calls to opposing window systems from the code. This means, us-
ing the same code, Windows based compilers will make calls to the Windows
Application Program Interface (API), whereas Linux based compilers will use
the X Libraries (XLib). By stringently following the ANSI-C standards of pro-
gramming, as well as obeying certain compiler-specific syntax rules, the SDK
has been confirmed as fully compatible on VC++ 6.0, VC++ 7.0, GCC, and
Borland compilers.

0.4 The Built-In Texture Mapper

Texture mapping is a technique by which two dimensional images (digital pic-
tures) are mapped onto a three dimensional framework. The OpenGL libraries
can handle texture mapping, provided that the user can load the picture into
memory and provide information about the orientation and magnification of the
projected texture onto the three dimensional object.

Due to the inherent difficulty of this process (loading in the images and
figuring out the orientation of the image), a texture mapping class was created
to automate such processes for the formats supported by the SDK, as well as
an explanation of their unique advantages, are presented in Table 1.

0.5 Mapping the Texture

In order to map a two dimensional texture onto a three dimensional object
(whether it be curved or planar), one must first determine the orientation and
magnification of the texture. In order to do this, two elements are required for
every vertex the two dimensional vertical distance from the bottom of the poly-
gon, and the horizontal distance from the corner (Woo, et al., 1999). Because
all three dimensional polygons exist (by construction) in three dimensions, this
process entails the development of an algorithm that will convert a 3D polygon
into its 2D equivalent, and then compute the horizontal and vertical texture
coordinates of each polygon.

6



A simple algorithm developed to automatically map textures relieves a devel-
oper of the need to manually calculate this relationship. After triangulating the
given polygon and selecting a starting triangle, the texture mapper constructs
a line between two of the triangles vertices. The distance between these two
points is the horizontal component of the 2D texture. The orthogonal distance
to the third point on the triangle can be found using the following equation
(Weisstein, 2003a).

For any line (V1, V2) and point (V0) where Vn is some point in three-
space.(ITALICIZE ME)

After finding the perpendicular distance from the vector, an algorithm in-
volving several algebraic and trigonometric processes is used to find the hori-
zontal component of the texture coordinate for the third point. The texture
coordinates for the other vertices are found in a similar way, although for a
triangulated polygon, the orientation of previous sections must be taken into
account before determining any mapped coordinates.

Another advantage of using a built-in texture mapping class is the simplicity
(and cleanliness) of implementing multi-texturing. Multi-texturing is a process

7



that allows more than one texture to be mapped over the same space. Possible
applications include variable ground and wall coverings (such as grass, mold,
and vines), clouds, logos, etc. The standard texture mapping class has the
ability to consolidate all of the various textures that should be mapped on each
surface in one concise class.

0.6 Space Partitioning

Three dimensional environments are made up of polygons. Even seemingly
curved surfaces are approximated using a polygonal mesh. Unfortunately, when
scanning for collisions, there is no native way to determine which polygons
could possibly collided with others. Every possibility must be detected, which,
for a large environment, can be computationally demanding for even the fastest
computer or graphics processor. Two methods of spatial subdivision have been
developed for the SDK: spatial occupancy enumeration, and, for increased effi-
ciency, an octree partitioning scheme.(FOOTNOTE 1)

0.6.1 Spatial Occupancy Enumeration

In order to determine whether polygons are near enough to an object to warrant
collision scanning, some method of space partitioning is needed. Spatial occu-
pancy enumeration partitions the environment into a number of equally sized
units (usually cubes), each of which either holds a part of a polygon, an entire
polygon, or is empty (in which case it can be ignored) (Foley, et al., 1996). Once
the world is divided thusly, collisions do not need to be checked against a large
number of individual polygons. Rather, the set of all proximate cubes can be
determined, and only the polygons within these cubes are checked.

0.6.2 Octrees

If a spatial enumeration cuberille has very many cubes (with close to one cube
per polygon) or very few (with very many polygons per cube), the space par-
titioning scheme will not improve the collision detection speed. However, if
there are a sufficient number of cube partitions to divide the set of all poly-
gons into smaller adjacent groupings, an appropriate spatial-occupancy array
can greatly increase computational efficiency. This is because not all polygons
must be checked for collision detection every frame only the ones in proximate
cubes. The appropriate number of cubic partitions is difficult to determine since
spatial-occupancy enumeration divides the environment uniformly and not all
environments have equally distributed polygons. A more efficient variant of a
spatial-occupancy cuberille is the octree, which partitions a multi-dimensional
space into cubes of non-uniform size, depending on the environmental distribu-
tion of polygons (Rogers, 1998).

Whereas spatial-occupancy enumeration divides a 3D space into a pre-defined
number of sectors, octrees take into the account the divide-and-conquer power

8



of binary subdivision progressively dividing all full cubes into eight uniform
octants (Foley, et al., 1996). Each of these octants are tested for their contents
if they are empty, they are ignored. If they contain an appropriate number of
polygons, the octant will be a computationally efficient division. Thus, a filled
octant (one containing an appropriate number of polygons) will be kept as an
end partition. Otherwise, if the octant contains too many polygons to be clas-
sified as an efficient space divider, it will be further subdivided (separated into
octants), with each subdivision following the same test process as its parent.

Octrees provide an application with the same advantages as a spatial enu-
meration, with the added advantages of self-determination (for division size)
and relative memory efficiency (because of the smaller number of inefficient
partitions). Thus, a spatial partitioning scheme utilizing octrees was chosen to
replace the relatively inefficient system of spatial occupancy arrays.

0.6.3 Hidden Surface Removal

Although octrees, and even Spatial Occupancy Enumeration arrays can be used
for hidden surface removal, the SDK utilizes OpenGLs built-in z-buffer algo-
rithm for depth testing. The z-buffer algorithm keeps track of the closest
recorded depth of every pixel projected onto the framebuffer as each polygon
is created, and only allows the corresponding element to overwrite the frame-
buffer if the projected depth is less than that already in the z-buffer (Woo, et
al., 1999). Although this approach seems very computationally inefficient, in
practical terms, it is the most common and often most efficient hidden surface
removal approach used today. This is because special dedicated buffers are of-
ten built into modern video cards for depth buffering, and the hardware-based
approach of OpenGLs hidden surface removal is, in most cases, much faster and
more efficient than any software-based surface removal procedure using space
subdivisions.

0.7 Collision Detection

Basic collision detection is a complicated topic in the creation of physics and
dynamics engines. In the real world, concrete objects interact with one another,
making collision detection redundant. In computer models, however, interac-
tions involve objects without physical substance. For this reason, expansive
algorithms must be devised to mimic the properties of real world collisions.
The SDK developed in this study utilizes an original collision detection algo-
rithm, designed to be an improvement over existing collision detection methods
due to its enhanced robustness, computational efficiency, and simplicity of im-
plementation.

Most iterations of collision detection available to developers today involve
the observation of a collision when an object is less than a certain distance away
from another object. Distance is measured by the radius of an object relative
to a plane via the following generalized algorithm (Weisstein, 2003b).

9



Two obvious limitations exist with this method of collision detection. First,
because it employs the use of radii for determining distance between all non-
planar objects, the algorithm only weakly determines collisions between non-
convex, or polyhedral, objects (Mirtich, 1998). This means that in terms of
collisions, many current physics engines will treat a three dimensional star as a
sphere of equal radius. Obviously, this is not a particularly accurate approach. A
second problem with many current collision detection algorithms is that they fail
to observe collisions in the limiting cases of discontinuous, or sufficiently rapid,
movement. In the context of a three dimensional application, such shortcomings
may result in a fast moving object completely bypassing a barrier, or another
object, which it should(ITALICIZE ME) collide with.

The collision detection algorithm devised for this SDK accounts for both of
these limitations. This algorithm is also designed to maximize computational
efficiency, which is a serious constraint for all collision detection algorithms.
Efficiency is ensured by the full support of a space partitioning scheme for all
cases. This acts to limit the number of objects which the collision detection
algorithm must examine for any vector of movement.

The collision detection algorithm developed for this SDK is driven by a min-
imal distance observation principle. The first step of the algorithm involves
the location of closest surface points on strictly distinct, non-orthogonal, ob-
jects. This allows the algorithm to robustly detect collisions between non-convex
shapes (such as stars). Closest points are determined by orthogonal vector de-
composition in the direction of projected motion, and by a simplified application
of the Gram-Schmidt process of orthogonal projection in the case of interaction
between an object and plane (Lay, 2003). Orthogonal decomposition of motion
is handled as a usual vector decomposition in three dimensional space.

The second process in the algorithm is the determination of a line in the
vector direction of movement. From this, distance projections are made on
all objects identified as potential barriers by the space partitioning scheme.
Projections are determined by the following generalized algorithm (Weisstein,
2003c).

For any line (V1,V2) and plane (V3,V4,V5) where Vn is some point in three-
space, and where (xn,yn,zn) Vn. (ITALICIZE, MATH SYMBOLS)

10



Due to the nature of orthogonal projection, the distance between the set of
points selected from any two objects is guaranteed to be minimal. Further, this
closest set of points is not limited to continuous, convex shapes. This allows for
robust collision detection between non-convex, or polyhedral, shapes (Mirtich,
1998). The final step in the general collision detection algorithm is a simple
comparison of projected (time-tempered) movement against the finite point of
collision with a given object. Obviously, if projected movement surpasses an
orthogonal projection point on a barrier, the algorithm observes a collision to
have occurred, and the amount of actual movement is modified accordingly.

In addition to handling complex shapes, this algorithm correctly identifies
collisions in objects moving in a discontinuous, or very rapid, fashion. Because a
collision is determined before movement occurs, strict continuity is not required
while determining distances. For the same reason, this algorithm accurately
detects collisions when objects are moving very rapidly. Thus, the previously
noted problem of a fast moving object bypassing a barrier cannot occur under
this collision detection algorithm. This is particularly desirable for slower com-
puters, due to the increased relative movement per frame under low frame rate
conditions.

0.8 conclusion

The aim of this project was to develop a portable, robust, easy to use software
development kit capable of producing programs for a range of multi-dimensional
applications. The SDK described here is not meant to be a finished product.
Indeed, one of the strengths of an easily used, powerful, open source SDK is that
its usefulness continually increases as software developers add new features and
optional modules or libraries to the kit(FOOTNOTE 2). Rather than present
a final product, this research paper describes the beginning of an evolutionary
process.

The guiding principles I followed in building this SDK are that it should
be: (1) easy to use, (2) powerful and flexible enough to support a wide range
of applications requiring the visualization of physical interactions and dynamics
within multi-dimensional space, (3) robust, (4) usable across operating plat-
forms, (5) scaleable, and (6) inexpensive. This SDK differs from existing kits
by combining all of these characteristics into one package. Other kits are easy
to use, but at the expense of power and flexibility; alternatively, some kits are
powerful but require considerable programming expertise. Furthermore, many
existing SDKs are oriented towards the creation of a specific class of application,
most notably computer games, whereas this project has developed a kit that
can accommodate any type of graphical application.

Various design and programming techniques were used to fully achieve the
desired results for the SDK. The modular framework upon which the kit is built
offers scalability and flexibility to the program, as does the open source nature
of the project. As developers create new and different modules and libraries,
the power and scope of the SDK will grow accordingly. The default modules

11



and available libraries for the SDK make software creation easy a developer
may choose to create or modify as few or as many modules as desired. Software
can be developed using this kit without the addition of a single line of code a
full application can be created through the use of scripts and configuration files
by relying on the default modules. Additional high-level functionality may be
possible in the future as new modules are added and the library archive contin-
ues to grow. Furthermore, should an experienced programmer require greater
control over the application development process, middle and low-level develop-
ment is possible. Every module and library (with the exception of OpenGL) can
be redefined and recreated. All elements (including the OpenGL and FMOD
libraries) of the SDK are free for non-commercial use, making the system very
inexpensive. Also, built-in operating system detection and cross-platform/cross-
compiler code make the SDK easily and naturally portable.

To date, the basic modules, libraries, and features discussed in this paper
have been coded and thoroughly tested. All possible submission cases for console
and user input modules have been error checked. Also, relative frames per
second and startup times (to load an environment) have been logged in order
to compare the relative efficiency of various algorithms. The SDKs memory
usage was monitored as well. Algorithms that werent robust enough to handle
all cases (such as the distance-radius collision detection method) or that failed
performance tests (such as the spatial occupancy enumeration partition method)
were revised and replaced.

In addition to those elements examined in this paper, many module-specific
and graphical elements have been implemented by the SDK to ensure the great-
est possible performance from applications. Console features include full key-
board and peripheral device mapping, saving and loading map files, executing
scripts, and a developing help library. Map syntax allows for easy multitextur-
ing, texture wrapping, and texture movement/rotation. Automatic rendering
support for vertex arrays optimizes code and improves rendering speed without
any input from the developer. Additionally, alpha blending and masking are
both supported, allowing developers to choose any amount of transparency or
opacity. A Lambertian-based lighting scheme supports the dynamic, realistic
creation of multiple light sources and the stencil-buffer is used to create basic
shadows and reflections. Motion-blur effects blend successive screens and can
add fluidity of motion to a graphics. All of these features expand and enrich
the abilities of the SDK.

Despite all of the time and effort that has gone into the SDK to date, future
implementation of other features will provide increased support for a diverse
range of applications. Planned support for existing 3D modeling formats, such
as 3D Studio Max (.3ds), Wavefront (.obj), or ASCII Scene Export (.ase) files
will allow developers to better build off of the existing work of others. Support
for movie file playback (.avi, .mpeg) and the added utility of screen capture
commands will expand the abilities of potential developers. Also, development
of an advanced particle engine will allow for the dazzling visual effects needed for
explosions, dust clouds, and water movement. In addition, integrated netcode
will allow many developers to support inter-application communication, some-

12



thing which is often prohibited due to the complicated nature of networked
programs. Currently, a prototype of a netcode library is in existence, although
cross-platform issues are holding up development.

In this project, I have succeeded in creating a powerful and robust SDK for
the development of multi-dimensional applications, as per the guidelines laid
out at the beginning of the study. However, like all open source programs, the
SDK is an evolving process. Development continues on the built-in functions
and features of the kit. Once released, as increasing numbers of new modules
and libraries are created, the kit will become progressively broader and more
encompassing. Furthermore, with the development of faster and better video
and graphics processing capabilities, the field of 3D graphics will continue to
change. These advances will surely have an impact on the SDK and the role
that it assumes in the future.

13


