
A Study of High Performance Computing and the

Cray SV1 Supercomputer

Michael Sullivan

TJHSST Class of 2004

June 2004



0.1 Introduction

”A supercomputer is a device for turning compute-bound problems into I/O-
bound problems.”
–Seymour Cray

High Performance Computing (HPC) is the branch of computational re-
search that focuses on developing systems that provide more computing per-
formance, power, or resource than is generally available. From the software
perspective, this usually means developing parallel processing algorithms and
programs that can be processed simultaneously by multiple processors. From
the hardware perspective, supercomputers generally focus on distributed sys-
tems, with multiple processors and interconnected memory. Depending on the
expected cost and final use the system is designed for, supercomputers may
be comprised of cutting-edge technology, with massive memory banks, or may
be a distributed system of off-the-shelf components. There are advantages and
disadvantages to each approach – no one solution is ideal for all purposes.

0.2 Uses

Supercomputers are mainly used for applications which fit into one or more of
the following categories.

1. Long: A process which requires many CPU hours to complete.

2. Large: Requires large memory and/or disk space.

3. Distributed: Process composed of many independent tasks.

4. Time critical: The amount of processor time it takes to complete is im-
portant.

For any application which does not fit into these criteria, a lower-cost solution
may be advisable.

0.3 Types

There are four main types of supercomputers:

1. SMP clusters: Shared-memory clusters utilizing non-vector processors,
most using RISC microprocessors.

2. Vector clusters (or Vector SMPs): Shared-memory clusters utilizing vector
or array processors.

3. COWs (Clusters of Workstations): Distributed memory computers, often
comprised of hundreds or thousands of separate off-the-shelf PCs.

1



4. SIMD / Special purpose array processors: Single instruction, multiple data
computation popularized by early vector processors and now implemented
in commercial CPUs.

The Cray-SV1 is considered to be a Vector cluster, due to its 16 SMP vector
processors and central memory bank.

0.3.1 Grid Computing

”If you were plowing a field, which would you rather use? Two strong oxen or
1024 chickens?”
– Seymour Cray

A low-cost alternative to traditional cluster or distributed computing mod-
els is grid computing. Grid computing utilizes large numbers of computers
arranged as clusters embedded in an open telecommunications infrastructure.
This approach to distributed computing involves the sharing of heterogeneous
resources running all different platforms and architectures located in different
places all over the globe. The ability of grid computing to transcend admin-
istrative domains, software platforms, and hardware architectures sets it apart
from standard distributed computing approaches.

0.4 Amdahl’s Law as Applied to Parallel Com-

puting

As the number of processors increases, even highly parallelized code does not
increase proportionally in speed (thus, 2 processors do not run code at twice
the speed of 1 processor).

Amdahl’s Law states that if P is the fraction of a calculation that is par-
allelized, and thus (1-P) is the fraction that is sequential, then the maximum
speedup that can be achieved by using N processors is:

1/((1 − P ) + P/N) (1)

2



Notice that if it were possible to parallelize 100% of all code, then there
would be a 1:1 relationship between number of processors and speedup, and 2
processors would run at twice the speed of 1 processor. However, this is not
generally possible, because there is often a need to have sequential operation in
a program which is difficult to parallelize. Also, small processes do not benefit
from parallelization, since the overhead of passing data between processors can
outweigh the computational boost of distribution if the application or data size
is too small.

0.5 Parallelization

In order to parallelize sequential code, one needs to partition it into smaller
pieces that can be run independently and simultaneously on separate processors.
The partitioning process is called decomposition, and it can be achieved in two
distinct ways: Data Parallelization, and Task Parallelization.

0.5.1 Data Parallelism

Data, or ”fine grain” parallelism, allows many processors to work on one large
task simultaneously by assigning each processor a piece of the data to work on.
This means that the same code is run on each processor, but each CPU works
on its own, unique part of the code, allowing a single task (such as a ”for” loop)
to be split among many processors as relatively small subtasks.

3



The defacto standard for data parallelization that has emerged in the past
few years is the OpenMP set of compiler directives. This set of directives can
be inserted into code in order to parallelize a single loop or task. Although
OpenMP can also be used for Task Parallelism, doing so requires a compari-
tavely large amount of manual reprogramming (comprable to that needed to
implement message passing), and OpenMP will not generally scale as well to a
large number of processors as will MPI.

The advantages of OpenMP and Data Parallelism:

1. Very efficient for shared memory systems, yet also viable for distributed
memory systems.

2. Naturally balances loads among available processors.

3. Can quickly and efficiently be implemented automatically by capable com-
pilers.

4. Locking and synchronization not generally needed on shared memory sys-
tems.

The disadvantages of OpenMP and Data Parallelism:

1. The programmer has limited control over the parallelization process.

2. Data placement and scope may have a serious impact on code execution.

3. Parallelization of very small processes may provide negative speedup due
to team creation overheads.

4. Scalability is limited as the number of processors increases, which is mainly
a result of the automatic parallelization of code.

0.5.2 Task Parallelism

Whereas data parallelism performs the same operations concurrently on different
parts of the data, task or ”coarse grain” parallelism runs different operations on
each processor simultaneously. With task parallelization, a piece of code is split
into independent tasks, or subroutines, that can be run on multiple processors
simultaneously.

Often, task parallelism offers a higher amount of parallelization than does
data parallelism. This is because there is often less data overhead associated
with task than data parallelism, and a greater amount of the code can be paral-
lelized since each processor can run sequential processes so long as they operate
independent of other subroutines.

The defacto standard for task parallelization on a large scale is MPI, or the
Message Passing Interface. Using MPI, processors can be instructed to perform
independent tasks simultaneously, and can communicate using a standardized

4



syntax. Although MPI can also be used for Data Parallelism, it is not gen-
erally an efficient solution due to the large amount of manual reprogramming
necessary to implement message passing, and the fact that MPI’s communica-
tion costs may dominate any potential speedup when dealing with smaller tasks.

The advantages of MPI and Task Parallelism:

1. Any independent process can be executed in parallel.

2. Runs well on both shared and distributed memory systems.

3. Scales well to a very large number of processors.

4. Locking memory not necessary.

The disadvantages of MPI and Task Parallelism:

1. Reprogramming is often necessary in order to balance processor loads and
synchronize processes.

2. Manual parallelization required.

3. Large, independent tasks are necessary to overcome communication costs.

4. Collective operations and communication are computationally expensive,
and may limit the number of processors that can effectively be used.

0.5.3 Explicit Threading

Another possiblity for course or fine grain parallelism is the defintion of explicit
threads (such as PThreads or Windows threads) which operate independently
on different processors. However, with this method, one has to communicate
between processes using shared memory regions, and worry about locking and
synchronization is left to the programmer. Because of the need for shared mem-
ory regions for collaborative processes, explicit threading is not generally used
on distributed memory systems. Explicit threading is often used to parallelize
code for a small number of processors (i.e. dual processor workstations), but
is not a robust solution for parallelizing code for supercomputing or scientific
purposes.

0.5.4 Multi-Level Programming

Both data and task parallelism offer their own architectural and computational
advantages and disadvantages. In order to get the maximum performance out
of modern supercomputer architectures, it is often advantageous to combine the
two styles of parallelism in the same program, which results in multilevel or
hybrid code.

The main performance benefit of multi-level programming is the general
improvement in program scalability over the exclusive use of course or fine

5



grain parallelism. Also, when properly implemented, multi-level code tends to
balance loads almost equally among a large number of processors, even when
relying heavily on coarse grain parallelism.

0.6 Fortran

FORTRAN, short for ”Formula Translator/Translation”, is a programming lan-
guage that was developed in the 1950s and is still in use today. Originally cap-
italized, the language has lost capitalization starting with Fortran 90, and now
is referred to as ”Fortran”.

Fortran was widely adopted by scientists for writing numerically intensive
programs, and the language’s inclusion of a complex number data type makes
it especially suited to scientific computation. The high performance backing
of Fortran has encouraged compiler writers over the years to produce compil-
ers that generate very fast code. Many vendors of high performance Fortran
compilers, including Cray, have added specialized extensions to the language
for special hardware features (instruction cache, CPU pipeline, vector arrays)
which are specific to their products’ architecture. Many of these extensions have
been incorporated into the main standard, making the proprietary extensions
obsolete. One notable exception is OpenMP, which, as was noted previously, is
a common cross-platform extension for shared memory programming.

0.7 References

1. COSC 3601 Lecture Notes. Available at: http://oldsite.vislab.usyd.edu.au/
education/COMP4601/index.html.

2. Dowd, Kevin; Severance, Charles (1998). High Performance Computing,
2nd Edition. O’Reilly & Associates; 2nd edition (July 2, 1998).

3. NCSA/WebCT Courses: Introduction to MPI, Multilevel Parallel Pro-
gramming, Parallel Computing Explained, Performance Tuning for Clus-
ters. Available at: http://webct.ncsa.uiuc.edu:8900/webct/public/home.pl.

4. Wikipedia Definition: Fortran, Grid Computing, Parallel Computing, RISC,
Supercomputer, Vector Processor. Available at: http://en.wikipedia.org.

6


