
Random Terrain Generation and Visualization of Real World
Locations

By Yale Zhang

1 Abstract

Computer terrain generation refers to building models of the earth’s physical
features such as mountains, plains, and seas, etc. Randomly generated ter-
rain uses algorithms based on fractal methods to create models resembling
natural terrain. The modeling of real world locations aspect of terrain gener-
ation involves combining various geospatial data such as elevation data and
polygonal feature data to create three dimensional virtual representations of
such locations.

2 Background

Virtual environment generation has been around for a while. The U.S. mil-
itary has been using it for battlefield simulations since the 1980s and is
currently building models of cities around the world as part of its combat
preparedness program. This project will focus on developing more practical
use for virtual environments such as for navigation. Random terrain can be
very detailed and complex, but it becomes more and more repetitive as the
area becomes larger. On the other hand, terrain based on real world data is
limited by the resolution of the data source. One of the aspects of this project
is to create realistic representations of real world environments by combin-
ing randomly generated terrain with terrain based on real world data; The
randomly generated terrain is used to interpolate the terrain between areas
where no recorded geospatial data exists.

The scope of the project will encompass research in the following areas:
1. Terrain generation methods

2. Computer Graphics
3. 3D Engine concepts
4. Geospatial data sources

1

3 Random Terrain Generation

Terrain has the property of being self similar. If you pick up a rock and
look at at its texture, you will notice that it has roughly the same overall
pattern as its parent rock formation when viewed closely. This is where the
use of fractals comes in. Fractals are part of a relatively new branch of math
known as chaos which seeks to describe complicated systems found in nature
such as weather patterns that are not easily explained by traditional theories.
Although the topic of fractals and chaos theory are beyond the scope of this
project, many of the methods used to generate terrain employ simple fractal
methods to produce such natural patterns.

So far, two algorithms for random terrain generation have been imple-
mented in the project: the midpoint displacement method and the Perlin
noise function.

Midpoint displacment
The midpoint displacement algorithm uses an iterative approach to pro-

duce random terrain by displacing the midpoint between two boundaries by
a random amount and repeating the process for the left and right subdi-
visions recursively. The mathematics behind it is called Brownian motion.
This concept is easily visualized in two dimensions as shown in the following
pictures and can be easily extended into three dimensions.

2

In midpoint displacement algorithm in three dimensions is called the Di-
amond Square algorithm.

Perlin noise
Perlin noise is a continus random variable function developed by Ken

Perlin in the 1980s. The basic idea behind it is to implement a function that
returns a value that varies continuously as a function of its parameter. This is
done by taking a discrete random number function such as C’s rand(), who’s
parameter is a seed, and interpolating the values of the function evalulated
at two points to get a continuous function. Depending on the method of
interpolation, very complicated natural patterns can be produced.

Perlin noise can be implemented in N dimensions. A one dimensional
function can be used to produce a random waveform which can be used as
”noise” in sound effects. A 2D Perlin noise function can be used to generate
heightmaps, which can look like clouds, by producing a height as a function
of xy pairs.

3

4 Computer Graphics

(Until I make it less subjective, this section definitely doesn’t belong in a
research paper)

The Evolution of CG
Computer graphics has grown in complexity over the decades. Once only

capable of drawing only lines and boxes, computers are now able to draw
complex scenes of near photorealistic quality, thanks mostly to Moore’s law.

The theories for CG have been devised and known since the 1960s. The
first 3d graphics libraries were mostly proprietary tools developed by uni-
versities and companies such as Silicon Graphics. Then in the late 1980s,
several standardized graphics library came into being.

RenderMan

The movie industry was one of the first major users of computer graphics.
RenderMan is a high level graphics language that was originally designed to
produce extremely complicated and photorealistic effects in movies. Practi-
cally every movie special effect has used RenderMan in some way (here’s a
list https://renderman.pixar.com/products/whatsrenderman/movies.html).

4

The liquid metal T1000 in Terminator 2 was a landmark in CG.

5

Sulley in Monsters Inc. is modeled with roughly two million computer
generated hairs.

RenderMan is a minimal graphics language compared to many of to-
day’s graphics libraries. There is no concept of rendering details such as
depth buffers or multi-texturing nor are there any limits such as the maxi-
mum number of lights. Instead, Renderman’s most powerful features are its
shaders. RenderMan shaders are essentially C functions that give CG artists
endless user programmability in drawing things. Instead of implementing
fixed function lighting functions or texture combining modes, all rendering
effects are implemented as shaders. As a result, RenderMan is very general
purpose and has changed little in twenty years and continues to meet the

6

requirements of today’s CG industry.
The following is an example of a shader which is used to draw an apple.

Do not be mistaken to think that texture mapping was used. The entire
surface of the apple except the geometry data is defined by this surface
shader:

7

Despite popular belief, RenderMan is not a ray tracer (it is implemen-
tation dependent). Pixar’s PRMan implementation uses the REYES (Re-

8

alistically Everything You Ever Saw) algorithm developed at Lucas Film’s
Industrial Light and Magic division (the CG branch of ILM eventually split
and became Pixar in 1986) which draws the scene in a fraction of the time it
takes to do ray tracing. Even with this algorithm, drawing RenderMan scenes
takes mammoth amounts of computer power. Toy Story, the first completely
computer generated film took 800,000 hours of computer time (50 hours
real time) just to produce less than two hours of actual film. Industrial Light
and Magic had pioneered the use of renderfarms, networks of hundreds or
thousands of computers working on the drawing process, and currently has
the second most amount of computing power in the world after the Defense
Department.

OpenGL

First introduced in 1992 by Silicon Graphics, OpenGL has been widely
used for high performance applications such as CAD and for scientific visu-
alization as well as in interactive games. Unlike RenderMan, OpenGL is a
more low level graphics language.

OpenGL lacks the user programmability of RenderMan but makes up for
it in speed. OpenGL is able to draw in real time unlike RenderMan because
OpenGL operations such as drawing a triangle or texture mapping can be
done blazingly fast using specialized hardware.

The following are images plaques and descriptions taken from the OpenGL
Red Book (the image quality might less than optimal because the images were
scanned from the book).

9

A scene with objects rendered as wireframe models

The same scene with textures maps and shadows added

10

A dramatically lit and shadowed scene, with most of the surfaces textured.
The iris is a polygonal model.

Direct3D vs. OpenGL
No 3D graphics discussion is complete without mentioning Direct3D. In

my opinion, Direct3D and DirectX is the epitomy of Microsoft’s desire to
reinvent the wheel. Basically, Microsoft realized that Windows 95 wasn’t
suitable as gaming platform, so they decided to add APIs to make Windows
a viable gaming platform. Just like how they ripped off Word from Word
Perfect and Internet Explorer from NCSA Mosaic, they bought the rights
to Rendermorphics, a 3D graphics library made by a British company. As
always before adopting anything not theirs, it had to be ”improved”.

The first releases of Direct3D were barely workable. It was a pain to
program with because of the use of low level structs. OpenGL was superior
in almost every way. DirectX 6 was the first truly workable version and
every succeeding version made marginal improvements. As of right now,
DirectX 9 has evolved to a point that it’s 3D API is esesentially the same
as OpenGL. However, each version of DirectX since 6.0 is incompatible with
earlier versions causing the need to have multiple run time support for each
version. OpenGL, on the other hand, has always been backward compatible
since version 1.0 and is supported on almost every computer platform there
is; DirectX only is supported on Windows. However, Microsoft evangelists

11

claim that OpenGL is only theoretically portable and that DirectX is only
theoretically not portable.

Direct3D does have an advantage over OpenGL in that it is more object
oriented (you specify which context you want to render to) and has much
better support for video hardware extensions. Game makers are even starting
to stop supporting OpenGL renderers in favor of Direct3D ones (i.e. Half-Life
2) - Microsoft evengilists at work?

The Future
The current trend in CG today is the increasing emphasis on both user

programmability and speed. RenderMan graphics might be very generic,
but is not at all suitable for drawing interactive environments. Lower level
graphics languages such as OpenGL offer real-time rendering but consist
of mostly of a fixed function rendering pipeline. New shading languages
such as NVIDIA’s Cg, OpenGL shading language, and Direct3D’s HLSL are
all attempts to give more programmability to low level graphics libraries
by introducing shaders that are able to run at interactive rates by using
dedicated video hardware.

Sources
¡http://www.geocities.com/CollegePark/5323/1980.htm¿
¡http://www.accad.ohio-state.edu/ waynec/history/ti¿
¡http://www.accad.ohio-state.edu/ waynec/history/timeline.html¿

12

5 3D Engine Principles

Generating a description of a virtual environment (i.e. position of objects,
light sources) doesn’t necessarily allow interaction with it. To be able to
travel through the environment, render the environment in an efficient way,
and to interact with it, the environment data needs to be organized in a way
to allow for efficient traversal. This is where a 3D engine comes in.

A 3D engine is a system of methods to handle such tasks such as drawing
the world and handling user interactions (i.e. collision detection).

Visible Surface Determination

In a typical 3D environment, there might be thousands of objects. De-
termining which objects are visible and needs to be drawn has been a classic
problem in the development of 3D engines.

The theories for visible surface determination of complex environments
have been ound for a while but it was the computer games industry that
first made widespread use of them in the 1990s. John Carmack of Id Soft-
ware, who wrote the engines to the Doom and Quake games, used binary
space partition trees partition trees and potential visibility sets in calculat-
ing the visible parts of a world. This approach is known as a cell based
method, which basically divides the world up into cells and then organizes
them hierarchically.

Although the cell based method can run very fast, the problem of this
approach is that the environment becomes too static. It becomes nearly
impossible to change the world without having to recalculate a lot of data.
Another occlusion method is the portal engine, which allows the world to
be more dynamic and requires less preprocessing, but which is more CPU
intensive to render.

Bsp trees, oct trees, PVSs, and portals can all be generalized as scene
graphs. As is true of any graph, a scene graph contains nodes that points to
relevant data. To draw the scene, the graph is traversed to find out which
nodes should be drawn.

Collision Detection

The

13

6 Geospatial Data

The following section will cover the use of geospatial data for this project.
Most of the information here was acquired from www.vterrain.org.

Creating three dimensional representations of the real world places in-
volves converting feature data (elevation, roads, ground cover, etc.) into
3D models. Geospatial data refers to any such data that describes Earth’s
features over a certain region.

The main challenge in this project is to combine the different data sets
together, such as mapping street information onto terrain contours. Urban
environments will probably be the hardest to model because of the density
and overlap of so many features.

The chief player in the development of GIS (global...) is the United States
Geographical Survey, a government organization that specializes in recording
almost every type of geographical data of interest. The majority of the data
collecting is usually done by individual states. Simliar organizations exist in
other countries as well.

Here’s a list of various data sources that can be used in producing virtual
environments. The data sets are generally downloadable free of charge (tax
dollars at work), except for data that is deemed to be critical to national
security. More specifically, this refers to elevation and image data which
come in several detail levels, with the most detailed versions not in public
domain.

Elevation

DEM (Digital Elevation Model)
DEM is a series of files that contain a regularly spaced grid of elevation

data for a region. The coverage for DEM is mostly for the United States.
A typical coverage areas are —– for 1:24000 data sets and —– for 1:250000
sets. Recently, the USGS has been phasing out the DEM file format and for
the newer, more generic, but much more complex SDTS file format, which is
supposed to be suitable for storing all geospatial data, especially DEM data.

DLG (Digital Line Graph)
DLGs also contain elevation data but store it using polygons representing

equal height contours. The advantage is that this method takes up much less
space than a regularly spaced elevation grid for relatively flat terrain. Just
like DEMs, the USGS has been integrating DLG files into SDTS data sets.

14

GTOPO30 and SRTM (Shuttle Radar Topography Mission)
These data sets have virtually global coverage. GTOPO30 elevation data

is on a regularly spaced grid of 1km per point. SRTM is based on GTOPO30
data except that it’s much more promising for terrain generation since it has
much more accuracy (30m to 90m).

Image data

Generally, providing image data coverage for the entire globe is more
difficult than doing so for elevation because a. It is dependent on the time
of day and atmospheric conditions (clouds). b. The ammount of storage
needed for detailed image data is astronomical even by today’s standards. A
typical USGS Digital orthoquadrangle, which provides 1 meter resolution for
a 7 square km area takes up 150 megabytes.

Multi-Feature Data

TigerLine
TigerLine data sets primary contain information on every street in the

United States as polygonal data. It also contains information on features
such as rivers, political boundaries and landmarks. The file format is ASCII
text.

Coordinate Systems/Map Projections

The most straightforward way to describe any arbitrary position on earth
is to use spherical coordinates, namely a longitude, latitude pair because the
earth is mostly spherical.

Even though longitude, latitude is the most universal way, there is the
need to display a small detailed area onto a map, which means converting
3D coordinates into 2D, called a projection. There are several dozen map
projections and this is beyond the scope of this paper.

In addition, to make an accurate measurement, the Earth cannot be as-
sumed to be a sphere. Instead, an ellipsoid model of the earth is used. There
are many ellipsoid models (called datums) of the Earth, but they are all
characterized mathematically by the length of the major and minor axis.
Often, two coordinates that are the same in a coordinate system might not
correspond to the same physical location on Earth because the coordinates
could be based on different datums.

15

Here’s a list of common coordinate systems
Geographical: (longitude, latitude)
This is the simplest and most universal system and has been used for

hundreds of years. This is especially favored by sailors because the coverage
is global.

Universal Transverse Mercator
This system uses a mercator projection based on projecting a 6 degree

verticle slice of the earth onto a cylinder. Conceptually, this coordinate sys-
tem lets you imagine the surface of the Earth as a flat sheet within certain
bounds. The coordinate pairs called easting, and northing therefore corre-
spond to points in a cartesian plane.

16

7 Building the Environment

Originally, my project was for both random and real world generation, but
due to the difficulty of learning L-systems, fractals, etc. needed for working
with random world generation, the emphasis is now on building a world from
geospatial data.

Terrain

Building the terrain requires knowing the following characteristics:
1. Elevation
2. Texture
There are two types of terrain images: geospecific and geotypical. Geospe-

cific images as it sounds are taken from a specificlocation and captures specific
and sometimes unwanted information such as the time of day. Geotypical
textures are generic images that are free from specific artifacts that can be
put together to make up an environment.

Cultural Features

Roads - From my research, it seems that there are no documented meth-
ods for generating three dimensional roads from vector data. Almost all
methods are commercial proprietary ones which basically stich the roads
into the terrain (vterrain.org). My method is very simple which just puts
the two end points onto the terrain.

17

8 References

Abrash, Michael. Inside Quake: Visible-Surface Determination. Accessed
10/30/2003. Available at http://www.gamedev.net/reference/articles/article981.asp

Avi Bar-Zeev. Scenegraphs: Past, Present and Future. Accessed 10/29/2003.
Available at http://www.realityprime.com/scenegraph.php

Bourke, Paul. Fractal Landscapes. Accessed 10/30/2003. Available at
http://astronomy.swin.edu.au/ pbourke/terrain/frachill/

Fractal Geometry: The Story of Benoit B. Mandelbrot and the Geometry
of Chaos. Available at http://www.fractalwisdom.com/FractalWisdom/fractal.html

Laurila, Pietari. Geometry Culling in 3D Engines. Accessed 10/19/2003.
Available at http://www.gamedev.net/reference/articles/article1212.asp

Ocean Waves. Accessed 10/14/2003. Available at http://www.naturewizard.com/tutorial02temp.html
Martz, Paul. Generating Random Fractal Terrain. Accessed 9/20/2003.

Available at http://www.gameprogrammer.com/fractal.html
Midpoint displacement method. Available at http://www.redbrick.dcu.ie/ bolsh/thesis/node19.html
Terrain Generation With Height Contours. Accessed 10/7/2003. Avail-

able at http://www.geocities.com/powersof2000/Prog Papers/terrain1.html
Virtual Cities. Accessed 10/29/2003. Available at http://virtualcities.ida.org

18

