Solving the Majority Classification Problem

Austin Rachlin

April 2003

Abstract

This document presents my project proposal for my senior techlab computer sys-
tems project. I am attempting to create an algorithm that will solve the Majority

Classification Problem in an efficient and successful manner.

1 Proposal

I am currently working with cellular automata and evolutionary computations to solve the
Majority Classification Problem. I hope to beat the existing record of about .85 com-
pletion in the MCP. I am working with test arrays that are of length 145. The rules are
based off of a 7-neighbor system and therefore need to be at least of length 128 (there are
128 possible combinations of 7 binary cells). However, I also added an extra cell where the

value (success rate) of the rule is stored.

1.1 Majority Classification Problem

Majority Classification Problem: The Majority Classification Problem deals with a test
array with binary cells that are randomly turned either on or off at the beginning of the
program. The test array has an odd number of cells so that a majority of the cells are either
turned on or off. A rule array is created that defines how each cell of the test array should
evolve in each step of the cellular automata. The purpose of the rule array is to turn the
entire test array either on or off, whichever is the majority in the original test array. The

goal of this problem is to create an algorithm that will produce an array that will turn a

high percentage of test arrays toward their majorities.

2 Components Necessary

The two main components of my project are a cellular automata system and a genetic
algorithm. The cellular automata system will drive the program and the genetic algorithm
will be modified to produce the best result. I do not yet know what kind of genetic algorithm
I will use. T will most likely have to do a lot of testing and trial-and-error to figure out which
variable values work the best. My program will also require a graphical output program to

display the output of the algorithms in a neat fashion.

3 BODY

3.1 Introduction

I am a senior at Thomas Jefferson High School of Science and Technology in Alexandria, VA.
I am working in the computer systems lab to complete my senior tech project. I have chosen

to use the Java programming language to approach the Majority Classification Problem.

3.2 Background

This program is based on genetic algorithms and cellular automata. A genetic algorithm
is a system of breeding rules towards the ideal and final state that will solve the problem.
Cellular automata systems define interactions among cells of arrays and govern how they

will change by affecting each other from one generation to the next.

3.3 Tools

I am programming the algorithms using the Java programming language. The graphical

output will most likely be done in OpenGL.

3.4 Procedure (tutorial)

I conducted a project that primarily involved genetic algorithms and cellular automata. Of
course, the first step to doing a project in computer science is knowing a computer language

in which to do the project. I recommend either C++ or Java (I used Javva for this project).

There are many online tutorials for learning either of these languages, but I recommend
finding a good book. Before beginning the project, it is useful to familiarize yourself with
GAs and CAs. Learn the basic concepts (TJ’s Al class taught me about GAs, and I learned
about CAs from Professors DeJong and Luke at GMU over the summer). Write a few
basic GAs and CAs to understand the basic concepts and also how to solve errors in the
programming. Next, it is time to begin the project. I recommend beggining with the CA.
Lay out the entire program with the necessary functions. After writing the function headers
that you will need, add parameters to the function headers. Run the program and make
sure it works! After the CA, it is time to begin the GA. Write a basic GA at first and make
sure it is compatible with the CA. Then, add complexities one at a time, always checking
the functionality. Once the GA and CA are complete, it is time to write a graphical output

to display your algorithm. I recommend OpenGL for this. Now, you're done!!!

3.5 Cellular Automata Background

A cellular automata is an algorithm that defines and controls the development of a system
over time. There are countless forms of cellular automata systems. For example, they can
range from 1D to 4D, or small scale to epic. The rule arrays can be simple or complex.
Development can be based off of one neighbor, 99 or more neighbors, or no neighbors at all.
The purpose of cellular automatas is to create a system, define the rules for development,

and observe any trends or patterns that result.

3.6 My Cellular Automata

The cellular automata that I programmed uses 149 cells and a 7-neighbor system. A function
is needed to create the array that will be the cellular automata. A random number generator
should be used on each cell to define it as "on” or "off.” For each test array, there should
be an extra cell added which is defined as the majority cell of the entire array. Next, the
100 test arrays will have to be created, each one 100 cells long. The same random number
function can be used to define every cell of the test arrays as either ”on” or ”off.” Another
function will be needed to define what these cells mean. The evaluate function should take
the accepted portion (7 cells surrounding and including the selected one) and convert it to
binary. The binary number will match up to one of the cells on the CA. If the CA cell is off,
the test cell becomes off. If the CA cell is on, the test cell becomes on. This process should
be applied 1000 times to each test array. A function should be run at every step of the
process to check the test array and see if all the cells are in the same mode ("on” or ”off”).
At the end of the 1000 steps, or when all the cells in the array are either "on” or ”off,” the
process should be stopped. If 1000 steps were reached and the array did not accomplish and
absolute state, then that run failed. Also, if the array is in an absolute state that differs
from the original majority (compare to the extra cell added for this purpose), then the run
fails. However, if the array is in an absolute stat that is the same as the original majority,
then the run is a succss. Another cell should be added to the rule array that will record the
success rate of the rule. This cell should be incremented by 1 if the run was a success, and

it should not be changed at all if the run failed. The cellular automata algorithm should

apply this process for every rule array on every test array. From there, the genetic algorithm
should be called, which will return modified rule arrays, and the cellular automata should

begin anew with these changed rule arrays.

3.7 Genetic Algorithm Background

Genetic algorithms are derived, as would be expected, from genetics. Genetic algorithms are
an Al-based concept designed to evolve systems towards the desired end. There are countless
methods of defining reproduction of genes to pass on to the next generation. Many of these
methods relate to real genetic processes. Every algorithm uses a specific set of factors to
suit the problem at hand. The hope is that each generation will provide subjects that offer

better solutions to the attempted problem.

3.8 My Genetic Algorithm

The Genetic Algorithm is based off of Roulette random choosing, with two-point crossover,
one-point crossover, and one-to-one options for breeding. Mutation and elitism are also
available. To do this, create a function that accepts the arrays defined in the cellular au-
tomata. The user is given a choice every rnu by means of text output/input when the genetic
algorithm is begun. First, you define the reproduction method for the subjects. There are
many considerations in the reproductive method. Ideally, you want to develop the subjects
towards a better end. Therefore, you need to evaluate the subjects on a fitness level and

set their probability for reproduction based on their fitness level. To evaluate the fitness

of arrays in this particular problem, simply evaluate the last cell, which should have been
defined in the cellular automata as the fitness of the array. A common means of selecting
which subjects will reproduce is to set up a figurative roulette wheel, with a proportion of
the wheel assigned to each subject based upon their fitness level. Have a function that turns
each fitness level into a percentage of the entire fitness sum of every subject. Then, random
numbers are generated in a seperate function (0-100) and the subjects whose portions of the
wheel the numbers relate to are selected to reproduce. Breeding can be done in many ways.
For breeding of two subjects together, you can divide the ”chromosomes” at one point and
take half of each and splice them together. Use a random number generator to select a point
at random in the arrays and insert the first half of the first array into a new array, and the
second half of the second array into the new array. Also, it is common to divide the chro-
mosomes at two points and splice the genes together. This works by generating two random
numbers, accepting the first and last third (as defined by the random numbers) from the
first array and the middle third from the second array. The genes can be alternated at every
point, or they can be randomly selected from one of the two at every point. Alternation is
implented fairly easily, but it is not too practical in developing better arrays. To randomly
select one at each point (more similar to real genetics), simply have a binary random number
generator that will govern from which array each cell will be taken and inserted into the new
array. There are also many extra features that are often included in a genetic algorithm. For
instance, mutation is fairly common. In every offspring, add a small but significant chance

that genes will be randomly altered. Another feature that can be used is elitism. Elitism

ensures that the most fit subject in each generation survives into the subsequent generation.
Simply pass the entirety of the most fit array (found through a simple search of fitness lev-
els) to a child array. However, my genetic algorithm is not currently compatiblen with my
cellular automata. There is a problem somewhere that is nearly impossible for me to debug.

This will therefore cause problems in my analysis and conclusions.

3.9 Results

The rule arrays have a diversity of results. Some of the rule arrays never manage to turn
the arrays towards a final state, others do it consistently in under 10 steps. Rule arrays
occasional produce patterns in the development of the test arrays. Also, many of the rule

arrays always turn the test arrays towards the same final state, despite the starting factors.

3.10 Discussion

There appears to be a very odd quirk in my cellular automata. The majority of the moder-
ately successful rule arrays (averaging, as would be expected, around 50They therefore have
approximately a 50-50 chance of being correct. The best of these are very efficient and can
turn the array towards a final state in under 10 steps. However, these arrays therefore also

have obvious limits in that they can never become more successful.

3.11 Conclusion

There is apparently something in my cellular automata that encourages rule arrays to ef-
ficiently turn the test arrays towards the same final state every time. I do not know why
this happens, but I have a few guesses. Perhaps my cut off for the cellular automata devel-
opment (1000 steps) is not long enough to allow most rule arrays to finish developing test
arrays towards a proper majority. Therefore, the algorithm will favor any rule that achieves
a quick final state. Even if that final state is always the same, the rule array should still
have an approximate success rate of 50than that of an array that never manages to finish its

development within the development limit.

3.12 Recommendations

As a personal preference, I would recommend using C++ rather than Java. While Java
served fine for the Cellular automata, I had trouble implementing the genetic algorithm.
Because I am more familiar with C++4-, it would have been an easier program for me to

trouble shoot. Also, in the end, I used C++ for the graphical output of the program runs.

4 Sample Runs

4.1 Sample Run 1

Hajimemashoo

10

BEST

Rule: 0000100101010100101111001111000110001010100001101101100111011010001001111000010011
FINAL TEST

BLACK: 69

WHITE: 80

majority: OFF

11

12

13

14

15

AA A A A A A A AAAAAAAAAAAAAAAAAAA~AAAAAAAAAA~AAAA~AAAA~AAAA~AAAA~AAAAA~AA~AAAA~AAA~AAA~AA~AAAA~AAAA~AA~AA~AAA~AA~AAA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A
AA A AAAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AA A~~~ A~~~ A~~~ A~~~ A~~~ A~ A~~~ A~AA~AA~AA~AA~A~AA~AA~AA~AA~AAA~AA~AAA~A~AA~AA~AA~A~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A~A
AA A A A A A A A A A AA~AA~AA~AAA~A~AAA
AA A A A A A A A A A AA~AA~AA~AAA~A~AAA

AA A A A AAAAAAA~AA~AA~AA~AAAAAAAAA~AAA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A A~~~ A~AA~AA~AA~AA~AA~AA~AAA~AA~AAA~A~A~A

BLACK: 76
WHITE: 73
majority: ON

FEEE T Ny FEEE Tererr I N e e AR AR A RN
RRRE FEETEEE Tt NERRRRRRRRRNY FEEEE 10 T NERRRRE
RN RN FEEEEEEEEEEr 1 AN I
I R RN RN e e A e NN AR DR RN
LEEErreereerr 1 LEEEEETEEEEreeereeer e 1 N

LT I AN R N B AR A

LECEEEEEE teerer e e e e e et e e 1 NN FEEE FEEEEErErerd

16

17

18

19

RN B RN R Ay I

FEEE T N e e R R R RN RN RN RN RN RN R AR A R AR RRRRRRRRN
RN FEEEEE CE TEErere e
I N
A A
A A~ A A A A A A A A A A A A A A AN~~~ A A A A A A A A A AN AN AN AN A
A A A A A A A A A A A~ A A A A A A~ A A A A A A
A A A A A A A A A A A~ A A A A A A~ A A A A A A
A A~ A A A A A A A A A A AN AN AN
BLACK: 84
WHITE: 65

majority: ON
N RREN N I I I AR R e R R R R N A AR N Y

20

21

22

23

AAAAAAAAAAAAAAAAAAAAAAAAAAANAA~AAAAAAAAAAAAAAAAA~AAA~AAA
AA A A A A A A A A A AA~AA~AA~AAA~A~AAA
AA A A A A A A A A A AA~AA~AA~AAA~A~AAA
AA A A A AAAAAAA~AA~AA~AA~AAAAAAAAA~AAA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A A~~~ A~AA~AA~AA~AA~AA~AA~AAA~AA~AAA~A~A~A

AA A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAA~AAAA~AAAA~AAAAAAAAA~AAAAAA~AAAA~AAAA~AAAAA~AA~AAA~AAAA~AA~AA~AA~AA~AA~AA~AAA~A~A~A

BLACK: 70
WHITE: 79
majority: OFF
FEEEEEErr O e O RN A R N R A R RN Y LI
RN R R B NRRRRN R RN
N N R RN R R N 111 NRRRRRERN
O Crrereeereeee e e rerer e e e et e
NRRRRRNRR RN Y NN 111 NEERERRRRARAY
LEEEeeerreeeeeeeeer 0 e e rerer e e reeeee et 1
NERRRRRRNN AR RRRRARRRRNRRRRRRRE AR AR RN
LECEEEEErer o reeere e FEEEE TEEETEEEET
I EEEEEErrrreere e e e e eer e e e e e e e e e 1l

24

25

26

AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A
AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A
AA A A A A A A AAAAAAAAAAAAAAAAAAA~AAAAAAAAAA~AAAA~AAAA~AAAA~AAAA~AAAAA~AA~AAAA~AAA~AAA~AA~AAAA~AAAA~AA~AA~AAA~AA~AAA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A
AA A AAAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AA A~~~ A~~~ A~~~ A~~~ A~~~ A~ A~~~ A~AA~AA~AA~AA~A~AA~AA~AA~AA~AAA~AA~AAA~A~AA~AA~AA~A~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A~A

AA A A A A A A A A A AA~AA~AA~AAA~A~AAA

BLACK: 71

WHITE: 78

majority: OFF

NER N 1 11 T I O B B 111 N
I I N RN N e N NN B A NRERRN

27

28

AA A A A A A A A A A A A AA~AAAAA~AA~AA~AA
A A A A A AAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~AAA~AA~AA~AA~AA~AA~AAA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~A A~~~ A~~~ A~AA~AA~AA~AA~AA~AA~AAA~A~AAA~A~A~A

AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAA~AAAA~AAAAAAAAAAA~AAAA~AAAA~AAAA~AAAAA~AAAA~AA~AAA~AA~AA~AA~AA~AA~AA~AAA~A~A~AA

29

AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A

AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A

2/ 5

Result: 40.0%

owatta!

4.2 Sample Run 2

Hajimemashoo

BEST
Rule: 0101000000010111001001100101100001101110101000000000110111101110010000010010011101
FINAL TEST
BLACK: 70
WHITE: 79
majority: OFF
T 1 I T e I e I A R R R I N R
AR RN R L1 RN IR RRRERRRY N

30

31

32

33

AA A A A A A A A A AAA~AAAA~AA~A~AAA
AA A A A A A A A A AAA~AAAA~AA~A~AAA
A A A A A AAAAAAA~AA~AA~AA~AAAAAAAAA~AAA~AA~AA~AA~AA~AA~AA~AAAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A A~~~ A~AA~AA~AA~AA~AA~AA~AAA~A~AAA~A~AA

AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAA~AAAA~AAAAAAAAA~AAAAAA~AAAA~AAAA~AAAAAA~AAA~AA~AAA~AA~AAA~AA~AA~AA~AAA~A~AA

34

AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A

BLACK: 65
WHITE: 84

majority: OFF

35

36

37

38

AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAA~AAAA~AAAAAAAAA~AAAAAA~AAAA~AAAA~AAAAAA~AAA~AA~AAA~AA~AAA~AA~AA~AA~AAA~A~AA

39

AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A
AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A
AA A A A A A A AAAAAAAAAAAAAAAAAAA~AAAAAAAAAA~AAAA~AAAA~AAAA~AAAA~AAAAA~AA~AAAA~AAA~AAA~AA~AAAA~AAAA~AA~AA~AAA~AA~AAA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A

AA A AAAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AA A~~~ A~~~ A~~~ A~~~ A~~~ A~ A~~~ A~AA~AA~AA~AA~A~AA~AA~AA~AA~AAA~AA~AAA~A~AA~AA~AA~A~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A~A

BLACK: 77
WHITE: 72

majority: ON

40

41

42

AAA~AAAAA~AAAAAAAAAAAAA~AAAA~AA
AA A A A A A A A A AAA~AAA~A~AAA
AA A A A A A A A A AAA~AAA~A~AAA
A A A A A AAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A A~~~ A~AA~AA~AA~AA~AA~AA~AAA~A~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~AA~A~AA

AA A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAA~AAAAAAAAA~AAAAAA~AAAA~AAAA~AAAAA~AA~AAA~AA~AAA~AA~AAAA~AAA~AAA~A~A~AA

43

BLACK: 71
WHITE: 78

majority: OFF

44

45

46

47

AA A A A AAAAAA~AAA~AA~AA~AAAAAAAAA~AAA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A A~~~ A~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~AA

AA A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAA~AAAAAAAAAAAAAA~AAAA~AAAA~AAAAAA~AAA~AAAA~AA~AAA~AA~AA~AA~AAA~A~A~AA

48

AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A
AA A A AAAAAAA~AA~AA~AA~AA~AAAAAAAAA~AAA~A AR~ A~AA~AA~AA~AA~AAA~AA~AA~A A~~~ AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~A~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A

AA A A A A A A AAAAAAAAAAAAAAAAAAA~AAAAAAAAAA~AAAA~AAAA~AAAA~AAAA~AAAAA~AA~AAAA~AAA~AAA~AA~AAAA~AAAA~AA~AA~AAA~AA~AAA~AA~AAA~AA~AA~AA~AA~AA~AA~AA~AA~A~A~A

BLACK: 77

WHITE: 72

majority: ON

R [e e N A R e N e LEE LT |11 LR tee 1
LEE T (O 1 N RN N I I N

NN N LEEE T 0 T RN
L1 AR AN R N N N O N O e DR R R RN
I (1 O A O O 1 1 1 Y B

I rEErreerr 1 1 T Y Y O O I LT |11

NAEN N R I A LT O RN A
R RN RN LEE e rerreerreererrrer et I

Il ARRRRRRN I (N e e N AR I
N AR N RN RN | N oy
oy (. I T O O Y T ERRRN

A N e 1 I e LEE 1
oy FECEREEETEEr s LD T TETTd RN A R

I T B 8 I N

49

90

51

52

93

aa
AA
nn
AA

AA A A A A A A A A A AA~AA~AA~AAA~A~AAA

1/5

Result: 20.0Y%

owatta!

4.3 Sample Run 3

Hajimemashoo

BEST

Rule: 0000000010001011101100001111100100100011111101000000011100111101101001101101111010
FINAL TEST

BLACK: 81

WHITE: 68

54

majority: ON

O RN e e e e R R RN R R RN RN AN RN RRRY IR R R

ERRRRRRNRRERRR RN R R R RN E e N e e B B AR R R RN N
LEEEEEErrerereer te ee re reererererreeereeereereeereer et e teee e e e e
LEEEEeerrerereer e teer e e e e e e e e e e e e e e R RN
NERRRRERNRRRNER LEEEEEErrereereerer e ereeeeer et reeer Feeer e er e
LEEEEEEEEEeeeee e reeeeeeererrrereeeerreereeeerereeer 0 e e e e e e e e e e e e e e e
LEEEreerreeerer o reeeeereerrrereeeeeeeee e e rerre ot e e e e e e e e e
NERRRRNRRRRRN N LECEEEErrrrreererere e e e e e e e et e e e e e e e e e e e e
LEEEEerrrerereer o teere e
LECEEEEErErereeer teere e e e e e e e e e e e e e e e e e et e

BLACK: 78
WHITE: 71
majority: ON

95

BLACK: 75

WHITE: 74

majority: ON

NN e N R R RN (O N N N RN e B RN N AR
FECTEETTERTT LEEEE T T N A RN R R AR RN RN AERRERRERRREE

26

BLACK: 74
WHITE: 75
majority: OFF

57

BLACK: 75

WHITE: 74

majority: ON

|| O N A RNy 8 O 1
eI T e rrrerreerreerer e rereerre e e e e e e e r bt N

o8

Result: 80.0%

owatta!

99

4.4 Sample Run 4

Hajimemashoo

BEST

Rule: 0101000011110101011101110001010110000111010100001101111111011101111101011111011111
FINAL TEST

BLACK: 73

WHITE: 76

majority: OFF

T e e s I I I I I I 1 Y R B B R A N B
T I I e e B R R R R I O O O A O R A R R RRRRRRRRRRRRRRN
LEEEEEEErerereeereeeeeerereererer - re reereeere et e e ee e e e e e e

BLACK: 78

WHITE: 71

60

majority: ON

I e I I e e e N AR R R R N e N NN AR R RN R R R I N
LEEEEerr reereeeereerer e reererereee e et e rer e e e e e e e e e e e
LECEEEEEEEEEr e

BLACK: 79

WHITE: 70

majority: ON

O R R e AR R e N A R R A e R N D NN RN NN RN
LErrreerereereeereerereeerrrerreereerereeerereerr e e e e e e e e e e
EEEEEEEEEEereeereeereerrereeeererre et e e e e e e e e e e e e et e e e e e e e e e e e e e e e e e e
FECEEEEEEEEEr e e e e e e e e e et e e e e e et e

61

BLACK: 72

WHITE: 77

majority: OFF

e T e 1 1 1 1 1 1 Y Y O O
T I I O R R B
FEEEEEEreeeereer ettt teerreree et
FECEEEEEEEEr e e e e e e et e et e rrrrrrer

BLACK: 75
WHITE: 74
majority: ON
e e I e e e e e R R e R A R R R N e RN R R AR R R AR R
LECEEerr ceeeerreerreerr eeereeere o eeeeereeerr o reeeerr ot e rreerr e et rrrrr

62

Result: 60.0Y%

owatta!

4.5 Sample Run 5

Hajimemashoo

BEST

Rule: 0000000101110000110011011001110100100010110010101001100101110001100011010011101011
FINAL TEST

BLACK: 77

WHITE: 72

63

majority: ON
O N O R B LEE e 1 N AR RN
LEEteee 1t et I T R RN R RN RRRR RN
RN N e e R R R NN AN A A e R R R R R R R A e A R
L NN I e e R R N A R RN RN AR RARRRERRRRE

I I I LEE e 1l I I

O R N N I
FECEEEEEEEErr e e e e e e e e e e rr e e e e e 1

I N N N A R RN RN RN N RN R AR RRR N
FECEEEEEEEErreeeeerereeeree e et e b

N e N R RN R RN RN RN RN AN AN R R AR R AR RRRRRRRRN
LECEEEEEre e e e rrr e e e e e e e e e e e e ret 1

I AR RN RN RN RN AN R A RARRRN
ECEEEEEEE e e e ere e e e e e er e e 1l Y

e e O RN RN RN ARRRRRRY
FECEEEEEEEEEr e e e e e e e e e e rer e e e e et tee trererrd

A
FEEEEEEEEerereeeeeeeeeerereerreee -t e

I I
FECETTEEEEEE e e e e 1

64

BLACK: 57

WHITE: 92

65

majority: OFF

66

BLACK: 83
WHITE: 66

majority: ON

67

68

BLACK: 76
WHITE: 73

majority: ON

69

70

BLACK: 72

WHITE: 77

majority: OFF

LEereer e e et ree e NEERRE LEEE e e b ek e

N IR AR RN RRN I OERRRREEE RN

RN e e A R R NN NN RN RR R R LEEE e trrreerr el NI

I I RN N RN RN L1 1 I

NERRRERERN N N RN R RN e N N O e AR R RN R R R R RN RN I
LEEE T tee e e O I I N RN RRRR

71

72

Result: 40.0%

owatta!

5 PROGRAM CODE

5.1 Cellular Automata Code

import java.util.Random;

73

/**

* Q@author Austin Rachlin

* Summer 2002

* Majority Classification Problem

*/

//Uses 7 neighbors

class test

int[] array = new int[149];

class rule

int[] array = new int[128];

int val;

public class MCP

74

public static Random rand;

static { rand = new java.util.Random();}

public static void main(String[] args)
{

//Calls CreateArrays

//Calls CreateRules

//Calls RunAllRules

////GA

//Returns some value

System.out.println("Hajimemashoo") ;

//Modifiable variables

//

int Number(OfTests=100;

int NumberOfRules=100;

int NumberOfFinalTests=1000;

//

75

test[] TestList = new test[NumberO0fTests];

CreateArrays(TestList) ;

rule[] RulelList = new rule[NumberOfRules];

CreateArrays(Rulelist);

int nbrs = 3;

RunAllRules(RulelList, TestList);

rule Best = SelectBest(RuleList);
System.out.println("");

System.out.println("BEST");

DisplayArrays(Best) ;

test[] FinalTestList = new test[NumberOfFinalTests];

CreateArrays(FinalTestList);

float result = FinalExam(Best, FinalTestList);

//Calls SelectBest

//Calls FinalExam

76

System.out.println("Result: " + result + "}");

System.out.println("");

System.out.println("owatta!");

public static void DisplayArrays(test List)

{
String str = "";
for (int i = 0; i < List.array.length; i++)
{
str += List.arrayl[il;
}
System.out.println(str);
}

public static void DisplayArrays(rule List)
{
String str = "";

for (int i = 0; i < List.array.length; i++)

7

str += List.arrayl[il;

System.out.println("Rule: " + str + " val:

public static void PrintArray(test List)
{
String str = "";

for (int i = 0; i < List.array.length; i++)

{
if (List.array[i] == 1)
{
str += "|";
}
else
{
str += " ";
}
}

System.out.println(str);

78

" + List.val);

public static void CreateArrays(test[] List) //Takes 2D array of arrays (empty) and #

{

//Creates all of the arrays

//2D array of all the individual arrays

for (int i = 0; i < List.length; i++)

List[i] = new test();

for (int j = 0; j < List[i].array.length; j++)

{

if (rand.nextBoolean() == true)

List[i].array[j] = 0;

else

List[i].array[j]l = 1;

79

public static void CreateArrays(rule[] List) //Takes 2D array of arrays (empty) and #
{
//Creates all of the arrays

//2D array of all the individual arrays

for (int i = 0; i < List.length; i++)

List[i] = new rule();

for (int j = 0; j < List[i].array.length; j++)

{

List[i].val = 0;

if (rand.nextBoolean() == true)

List[i].array[j]l = 0;

else

80

List[i].array[j] = 1;

public static void RunAllRules(rule[] RuleList, test[] TestList) //Takes all rules an

{
//Runs a loop to call ApplyRuleToAllTests for every rule
boolean prnt = false;
for (int i=0; i < RuleList.length; i++)
{
ApplyRuleToAllTests (RuleList[i], TestList, prnt);
}
}

public static void ApplyRuleToAllTests(rule Rule, test[] TestList, boolean prnt) //Ta

{

//Runs a loop to call ApplyRuleToSingleTest for all tests
for (int i =0; i < TestList.length; i++)

{

81

ApplyRuleToSingleTest (Rule, TestList[i], prnt);

public static void ApplyRuleToSingleTest(rule Rule, test Test, boolean prnt) //Takes
{

//Applies the individual rule to an individual test

//Calls EvalArray

//Calls StoreArray

//Calls RecordSuccess

int runTime = 100;

test T1 Test;

int maj = FindMajority(Test, prnt);

int runs = 0;

do

for (int i=0; i < Test.array.length; i++)

{

82

Tl.array[i] = EvalArray(i, Rule, Test);
}

if (prnt == true)

{

PrintArray(Test);
}
runs ++;

}while ((AllSame(Test) == false) & (runs < runTime));

if (prnt == true)

{
for (int i=0; i < 5; i++)
{
System.out.println (""" T TN mm A A A AR A A A A A A A nn T
}
System.out.println("");
}

Rule.val += RecordSuccess(maj, T1);

83

public static int FindMajority(test Test, boolean prnt)
{

int on = 0;

int off = 0;

for (int i=0; i < Test.array.length; i++)

{
if (Test.array[il == 0)
{
off++;
}
if (Test.array[i] == 1)
{
on++;
}
}

if (prnt == true)
{
System.out.println("BLACK: " + on);

System.out.println("WHITE: " + off);

84

if (on > off)

{
if (prnt == true)
{
System.out.println("majority: ON");
}
return 1;
}
else
{
if (prnt == true)
{
System.out.println("majority: OFF");
}
return 0O;
}

/* public static int EvalArray(int pos, rule Rule, test Test) //Takes a single position

85

//Evaluates the array at a single position according to the rule

int x;

int y;

int z;

if (pos == 0)

{

x = Test.array[Test.array.length-1];

else

x = Test.array[pos-1];

y = Test.array[pos];

if (pos == Test.array.length - 1)

{

z = Test.arrayl[0];

86

else

z = Test.array[pos + 1];

int val = (((x << 1) | y) << 1) | z;

return Rule.arrayl[vall;

public static int EvalArray(int pos, rule Rule, test Test) //Takes a single position

{

//Evaluates the array at a single position according to the rule

int min3;
int min2;
int mini;
int c¢ntr;
int maxi;

int max2;

87

int max3;

if (pos == 0)

{
min3 = Test.array[Test.array.length-3];
min2 = Test.array[Test.array.length-2];
minl = Test.array[Test.array.length-1];
}

else if (pos == 1)

{
min3 = Test.array[Test.array.length-2];
min2 = Test.array[Test.array.length-1];
minl = Test.arrayl[pos-1];

}

else if (pos == 2)

{
min3 = Test.array[Test.array.length-1];
min2 = Test.array[pos-2];
minl = Test.arrayl[pos-1];

}

else

88

min3 = Test.array[pos-3];
min2 = Test.array[pos-2];
minl = Test.array[pos-1];

cntr = Test.arrayl[pos];

if (pos == Test.array.length - 1)

{
maxl = Test.array[O0];
max2 = Test.array[1];
max3 = Test.array[2];
}

else if (pos == Test.array.length - 2)

{
maxl = Test.array[pos + 1];
max2 = Test.arrayl[0];
max3 = Test.arrayl[1];
}
else if (pos == Test.array.length - 3)

89

maxl = Test.array[pos + 1];
max2 = Test.array[pos + 2];

max3 = Test.array[0];

}
else
{
maxl = Test.array[pos + 1];
max2 = Test.array[pos + 2];
max3 = Test.array[pos + 3];
}
int val = ((((C((((((min3 << 1) | min2) << 1) | minl) << 1) | cntr) << 1) | max1l)
// int val = (((x << 1) | y) << 1) | z;

return Rule.arrayl[vall;

/* public static void StoreArray() //Takes a single position value and location (x and
{

//Stores the resultant position of the array in the 2D array

90

*/

public static int RecordSuccess(int maj, test T1) //Takes a rule and modified array

{
//Modifies the value of the rule depending upon the outcome
if (AllSame(T1) == true)
{
if (maj == Tl.array[0])
{
return 1;
}
}
return O;
}

public static boolean AllSame(test T1)

{
int check = Tl.array[0];

boolean result = true;

91

for (int i = 0; i < Tl.array.length; i++)

{
if (check != Til.arrayl[i])
{
result = false;
}
}

return result;

public static int ReturnSuccess(rule Rule) //Takes a rule

{
//Returns the success of a single rule

return Rule.val;

public static rule SelectBest(rule[] RuleList)

{
//Chooses the best rule
rule Best = new rule();

Best.val = -1;

92

for (int i = 0; i < RuleList.length; i++)

{
if (RulelList[i].val > Best.val)
{
Best.array = RulelList[i].array;
Best.val = RulelList[i].val;
}
}

return Best;

public static float FinalExam(rule Best, test[] FinalTestList)

{
System.out.println("_________________________ ");
//Calls CreatArrays with enormous number
//Applies best rule to giant 2D array of landscapes
//Returns success rate
System.out.println("FINAL TEST");
// DisplayArrays (Best) ;

93

Best.val = 0;

boolean prnt = false;

ApplyRuleToAllTests (Best, FinalTestList, prnt);
System.out.println(Best.val + " / " + FinalTestList.length);
float val = Best.val;

float success = (100 * val / FinalTestList.length);

return success;

5.2 Genetic Algorithm Code

import java.util.Random;

/**

* Qauthor arachlin

* To change this generated comment edit the template variable "typecomment":

* Window>Preferences>Java>Templates.

94

* To enable and disable the creation of type comments go to
* Window>Preferences>Java>Code Generation.

*/

//Global Variables needed
//Matrix of all rules
//Reassign values after roulette wheel

//Matrix of rules selected by roulette wheel

//What type of breeding:
//0ne-Point Crossover

//int breeding_choice=1;

//Two-Point Crossover

int breeding_choice=2;

//0ne-to-one

//int breeding_choice=3;

95

class rule

int[] array = new int[128];

int val;

public class GA
{
public static Random rand;

static { rand = new java.util.Random();}

public static void main(rule Rule)

{

int tot=0;

rule[] tempRule = new rule[100];

rule[] tempRule2 = new rule[100];
EvalArray(Rule, tot);

Roulette(Rule, tempRule, tempRule2, tot);
for (int i=0; i<100; i++)

{

Mutation(tempRule2[i]);

96

//Evaluate the quality of each rule (already done in CA)
//Evaluate the total quality

//Re-evaluate qualities as a proportion of total

public static void EvalArray(rule Rule, int& tot)

{

for (int i=0; i<128; i++)

{

tot+=Rulel[i] .val;

}

//Roulette Wheel

//Use the evaluated quality to assign portions of the wheel
//Random number generator

//Store chosen rules in matrix

public static void Roulette(rule Rule, rule tempRule, rule tempRule2, int tot)

97

{

int[] rnd = new int[100];
for (int c=0; c<100; c++)
{

rnd[c]=rand () %tot;

}

for (int j=0; j<100; j++)
{

int temp=0;

int i=0;

do

{

temp+=Rule[i] .val;

if (temp > rnd[il || temp == rnd[il)
{

tempRule[jl=Rule[i];

}

i++;

}while (i<100 && temp<rnd[il);

}

98

for (int i=0; i<100; i++)

int one=rand()%tot;
int two=rand()%tot;
int varl,var2;
int tempTot=0;

for (int j=0; j<100; j++)

tempTot+=Rule[j];
if (tempTot>=one)
{

varl=j;

if (tempTot>=two)
{

var2=j;

99

Breeding(Rule[var1l], Rule[var2], tempRule2, 1i);

}

//Breeding

public static void Breeding(int[] Rulel, int[] Rule2, rule tempRule, n)
{

switch(breeding_choice)

{

case 1:

One_Point_Crossover(Rulel, Rule2, tempRule, n)

break;

case 2:
Two_Point_Crossover (Rulel, Rule2, tempRule, n)

break;

case 3:

One_to_One(Rulel, Rule2, tempRule, n)

break;

100

//Crossover

//0ne-Point

public static void One_Point_Crossover(int[] Rulei, int[] Rule2, rule tempRule, n)
{

int[] t=new array[128];
int point=rand()%128;

for (int i=0; i<128; i++)
{

if (i<point)

{

t[i]=Rulel1[i];

}

else

{

t[i]=Rule2[i];

}

}

tempRule [n]=t;

101

//Two-Point

public static void Two_Point_Crossover(int[] Ruleil, int[] Rule2, rule tempRule, n)
{

int[] t=new array[128];
int pointl=rand()%128;
int point2=rand()%128;

if (pointil<point2)

{

for (int i=0; i<128; i++)
{

if (i<point1l)

{

t[il=Rulel[i];

}

else if(i<point2)

{

t[il=Rule2[i]l;

}

else

102

{

t[il=Rulel[il;

}

}

}

else

{

for (int i=0; i<128; i++)
{

if (i<point2)

{

t[il=Rulel[il;

}

else if (i<point1)
{

t[i]=Rule2[i];

}

else

{

t[i]=Rulel[il;

}

103

tempRule [n]=t;

3

//Random at each spot
public static void One_to_one(int[] Rulel, int[] Rule2, rule tempRule, n)
{

int[] t=new array[128];
for (int i=0; i<128; i++)
{

int rnd=rand()%2;
switch(rnd)

{

case O:

t[i]=Rulel[il;

break;

case 1:

t[il=Rule2[i];

break;

}

104

}
tempRule[n]=t;

3

//Mutation

public static void Mutation(int[] Rule)

{

for (int i=0; i<128; i++)
{

int rnd=rand()%100;

if (rnd == 0)

{

if (Rulel[i]l == 0)

{

Rule[il=1;

}

else

{

Rule[i]=0;

105

//Elitism
public static void Elitism(int[] Rule, rule tempRule)

{
tempRule [0] = Rule;

}

6 References

A technical paper: "Evolution via genetic algorithms" by Gary H Anthes; Computerworld.

http://proquest.umi.com/pqdweb?Did=000000140685651&Fmt=4&Deli=1&Mtd=1&I1dx=19&Sid=4&RQT=3

A technical paper: One student’s attempt to solve the majority classification project an

http://cs.gmu.edu/"sean/it910/CA.pdf

106

Paper regarding cellular automatas and genetic algorithms with mention of the majority c

http://www.iop.org/Books/CIL/HEC/pdf/ECH1_1.PDf

Genetic Algorithm FAQs

http://www-2.cs.cmu.edu/Groups/AI/html/faqs/ai/genetic/top.html

Guide to Genetic Algorithms

http://www.cs.qub.ac.uk/"M.Sullivan/ga/ga3.html

Another guide to Genetic Algorithms

http://chemdiv-www.nrl.navy.mil/6110/6112/chemometrics/practga.html

Cellular automata basics

http://cell-auto.com/

Modern cellular automatas

http://www.collidoscope.com/modernca/

Very cool pictures of animated cellular automata systems

http://www.bayarea.net/ "maydwell/htdoc/ca/

107

The common interactive cellular automata titled the "Game of Life"

http://world.std.com/ bgw/applets/1.02/Life/Life.html

Another "Game of Life" page

http://www.math.com/students/wonders/life/life.html

A website to help deal with Java-based genetic algorithms

http://www.aridolan.com/ga/gaa/gaa.html

108

