A Four-step Camera Calibration Procedure with Implicit Image Correction
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Abstract

In geometrical camex calibration the objective is to deter-
mine a set of camarparametes that describe the map-
ping between 3-Defeence coalinates and 2-D inge
coorinates. ¥rious methods for camercalibration can
be found fom the liteature. However, surprisingly little
attention has been paid to the whole caiimn procedue,
i.e,, contol point etraction flom imaes, model fitting
image corection, and emrs originating in these stgs.
The main intezst has been in model fittinglthough the
other st@es ae also important. In this paper wegsent a
four-step calibation piocedue that is an ¥tension to the
two-step method. Thers an additional step to compen-
sate for distortion caused by cirar featues, and a step
for correcting the distorted inge coodinates. The inge
correction is performed with an empiricalvierse model
that accuately compensates foadial and tangntial dis-
tortions. Hnally, a linear method for solving the ane-
ters of the imerse model is @sented.

1. Introduction

Camera calibration in the comteof three-dimensional

ol i @e. oul u. fi

[5],[20]). In these tw-step methods, the initial parameter
values are computed linearly and the finalues are
obtained with nonlinear minimization. The methods where
the camera model is based orygibhal parameters, l&k
focal length and principal point, are callexpkcit meth-

ods. In most cases, thalues for these parameters are in
themseles useless, because only the relationship between
3-D reference coordinates and 2-D image coordinates is
required. In implicit camera calibration, the ypfcal
parameters are replaced by a set of norsighl implicit
parameters that are used to interpolate between some
known tie-points (e.g. [9]).

In this paperwe present a fotstep calibration proce-
dure that is amaension to the ta-step procedure. Section
2.1. describes the closed-form solution to the problem
using a direct linear transformation (DL Section 2.2.
briefly discuss the nonlinear parameter estimation. The
third step is needed if we use control points whose projec-
tions are lager than one p#{ in size. In Section 2.3., we
only consider circular featuresytssimilar analysis can be
made for arbitrary feature shapes. There are also other
error sources in featurexteaction, like changes in the illu-
mination, lut they are discussed in [4]. The fourth step of
the procedure is presented in Section 3. and itesadllve

machine vision is the process of determining the internalimage correction problem. Image correction is performed
camera geometric and optical characteristics (intrinsic by using a m& implicit model that interpolates the correct
parameters) and/or the 3-D position and orientation of theimage points based on theysital camera parameters

camera frame relat to a certain wrld coordinate system
(extrinsic parameters) [8]. In mgrcases, thewerall per-

derived in preious steps. A complete Matlab toolbox for
performing this calibration procedure will bevadable

formance of the machine vision system strongly dependsthrough the Internet.

on the accuracof the camera calibration.

Several methods for geometric camera calibration are

presented in the literature. The classic approach [7] tha?- EXplicit camera calibration

originates from the field of photogrammetry ssvthe
problem by minimizing a nonlinear error function. Due to
slowness and computationalutdlen of this technique,
closed-form solutions la been also suggested (e.qg.
[8],[1].[5]). However, these methods are based on certain
simplifications in the camera model, and thereforey, tiee
not provide as good results as nonlinear minimization.

Physical camera parameters are commonldeid into
extrinsic and intrinsic parameters. Extrinsic parameters are
needed to transform object coordinates to a camera cen-
tered coordinate frame. In multi-camera systems, the
extrinsic parameters also describe the relationship between
the cameras. The pinhole camera model is based on the
principle of collinearity where each point in the object

There are also calibration procedures where both nonlineagpace is projected by a straight line through the projection

minimization and a closed form solution are used (e.qg.

center into the image plane. The origin of the camera coor-



dinate system is in the projection center at the locagn (  sive camera model must be used. Usually, the pinhole mod-

Yo, Zg) with respect to the object coordinate system, andel is a basis that is extended with some corrections for the

the z-axis of the camera frame is perpendicular to thesystematically distorted image coordinates. The most com-

image plane. The rotation is represented using Euler anglemonly used correction is for the radial lens distortion that

w, ¢, andk that define a sequence of three elementary rota-causes the actual image point to be displaced radially in the

tions around, y, z-axis respectiely. The rotations are per- image plane [7]. The radial distortion can be approximated

formed clockwise, first around the x-axis, then the y-axis using the following expression:

that is already once rotated, and finally around the z-axis

that is twice rotated during the pieus stages. sul| kP kort L)
In order to &press an arbitrary object poidtat location ol |- 2 2

(%, Y., Z,) in image coordinates, we first need to transform o vitky i ko + )

it to camera coordinates;(y;, z). This transformation con- Wherjj%_lg;“z.. are coefficients for radial distortion, and

sists of a translation and a rotation, and it can be performed; = ,/U;"+V,". Typically, one or two coefficients are

by using the follaiing matrix equation: enough to compensate for the distortion.
Centers of cumture of lens suaces are not whys

(4)

X; strictly collinear This introduces another common distor-
Y, 1) tion type, decentering distortion which has both a radial
z and Fangentia_l cqmponent [7]. T_hxepeessiqn for the tan-

where gential distortion is often written in the falling form:

mlzzs?anTmp C.OSK — COSWSINK m,; ;=Cos¢ C-OSK 6ui(t) 2p, 07, + pz(riz + 20i2)

m,,=SiNWsiNg SiNK + COSWCOSK m,,=C0S0 SiNK ol s .2 . (5)

_ . . . o 6Vi pl(ri +2V, )+ 2p,u;y;
M, ;=COSWSIN¢ COSK + SINWsINK my,=—sing
M, = COSWSING SINK — SINGWCOSK Mj,=SiNWCOSP wherep, andp, are coefficients for tangential distortion.

Other distortion types la also been proposed in the lit-
erature. Br example, Melen [5] uses the correction term
for linear distortion. This term is relent if the image aes

The intrinsic camera parameters usually include theare not orthogonal. In most cases the error is small and the
effective focal lengttf, scale &ctors,,, and the image center  distortion component is insignificant. Another error com-
(uo, Vo) also called the principal point. Here, as usual in ponent is thin prism distortion. It arises from imperfect lens
computer vision literature, the origin of the image coordi- design and manatturing, as well as camera assembly
nate system is in the upper left corner of the image .arrayThis type of distortion can be adequately modelled by the
The unit of the image coordinates is gdix and therefore  adjunction of a thin prism to the optical system, causing
coeficients D, and D, are needed to change the metric additional amounts of radial and tangential distortions
units to piels. These co@tients can be typically obtained [2],[10].
from the data sheets of the camera and fgraiser In A proper camera model for accurate calibration can be
fact, their precisealues are not necessangcause theare derived by combining the pinhole model with the correc-
linearly dependent on the focal lendténd the scaleattor tion for the radial and tangential distortion components:

s,. By using the pinhole model, the projection of the point B " ®
(%, ¥i» z) to the image plane ispressed as M _ |Dusu(y +3ui" +oui)| {ﬂ
I

Vi | e +al) | Vo

M3,=COSWCOSP

) )
Uil _ FI%
Vil Gly; @ In this model the set of intrinsic parametdrs,(, ug, Vp)
The corresponding image coordinates v;') in pixels are  is augmented with the distortion cheientsky,..., ky, p;
obtained from the projectiofu;, v;) by applying the follow-  andp,. These parameters are alsownas plysical cam-

ing transformation: era parameters, since yhieave a certain pysical meaning.
u' D s U u Generally the objectte of the &plicit camera calibration
i = usuti| 4 |0 . . .
| s 3 procedure is to determine optimallwes for these parame-
Vi DWi | Vo 3)

] ) o ters based on image obsatiens of a knan 3-D taget. In
The pinhole model is only an approximation of the real the case of self-calibration the 3-D coordinates of thgetar
camera projection. It is a useful model that enables simple,gints are also included in the set of unkngparameters.

ject and image coordinates. However, it is not valid whenis performed with a knen taget.

high accuracy is required and therefore, a more comprehen-



2.1. Linear parameter estimation

The direct linear transformation (DLT) was originally
developed by Abdel-Aziz and Karara [1]. Later, it was
revised in several publications, e.g. in [5] and [3].

The DLT method is based on the pinhole camera model
(see Eq. (3)), and it ignores the nonlinear radial and tangen-
tial distortion components. The calibration procedure con-
sists of two steps. In the first step the linear transformation
from the object coordinates (X;, Y;, Z;) to image coordinates
(uj, v;) is solved. Using a homogeneous 3 x 4 matrix repre-
sentation for matrix A the following egquation can be writ-
ten:

X
1
U;Ww; a1 1 Ag3 Ay v
- i

ViWij| = |8p1 @pp 893 8y 2 ()
i
w; 831 8z Agz Ay 1

We can solve the parameters ayy,..., agq of the DLT
matrix by eliminating w;. Let us denote

(X, Y, 2,1 0 0 0 0 —Xyu, -Y,u; —Z,u, —u,
0 0 0 0 X;VYyZy 1 =Xgvy =Yqvy =Zqvq -V

0 0 0 =Xu -Yu -Zu -y

X Yy Z L =Xy, =YYy =4y -y

XnYnZy 1 0 0 0 0 —Xyuy =YpnUy —ZpnUy —Uy
0 0 0 0 XyYyZy 1 =Xy =YNYN ~ZNYN YN

_ T
a = [ayy, a5y, Ay, 814, Agy, Bgy, Bgg, By, Bgy, A, Agg, Agy

The following matrix equation for N control points is ob-
tained [5]:

La=0 8

By replacing the correct image points (u;, v;) with
observed values (U;, V;) we can estimate the parameters
ayq,..., A4 iN @ least squares fashion. In order to avoid a
trivial solution a;4,..., ag4 = 0, a proper normalization must
be applied. Abdel-Aziz and Karara [1] used the constraint
ag, = 1. Then, the equation can be solved with a pseudoin-
verse technique. The problem with this normalization is
that a singularity isintroduced, if the correct value of ag, is
close to zero. Instead of ag, =1 Fau%eras and Toscani [3]
suggested the constraint ag,; + a§2 +ag; = 1 which is sin-
gularity free.

The parameters ay4,..., ag4 do not have any physica
meaning, and thus the first step where their values are esti-
mated can be aso considered as the implicit camera cali-
bration stage. There are techniques for extracting some of
the physical camera parameters from the DLT matrix, but
not many are able to solve al of them. Melen [5] proposed
amethod based on RQ decomposition where a set of eleven

physica camera parameters are extracted from the DLT
matrix. The decomposition is as follows:

A = AVTBTFEMT )
where A isan overall scaling factor and the matricesM and
T define the rotation and translation from the object coordi-
nate system to the camera coordinate system (see Eq. (1)).
Matrices V, B, and F contain the focal length f, principa
point (ug, Vg) and coefficients for the linear distortion (b,
b,):

1 0-u, 1+b, b, 0 f00
V=101, B=|p, 1-b,of F=lofo
00 1 0 0 1 001

The linear distortion correction is used here to compen-
sate for the orthogonality errors of the image coordinate
axes. A five step algorithm for solving the parameters is
given in [5] and it not represented here. In this procedure,
the scale factor s, is assumed to be 1. In the case of copla-
nar control point structure, the 3 x 4 DLT matrix becomes
singular. Thus, a 3 x 3 matrix with nine unknown parame-
ters must be used. Melen also proposed a method for
decomposing the 3 x 3 matrix, but only a subset of physical
camera parameters can be estimated.

2.2. Nonlinear estimation

Since no iterations are required, direct methods are
computationally fast. However, they have at least the fol-
lowing two disadvantages. First, lens distortion cannot be
incorporated, and therefore, distortion effects are not gen-
erally corrected, although some solutions also for this prob-
lem have been presented. For example, Shih et al. [6] used
a method where the estimation of the radia lens distortion
coefficient is transformed into an eigenvalue problem. The
second disadvantage of linear methods is more difficult to
be fixed. Since, due to the objective to construct a nonitera-
tive algorithm, the actual constraints in the intermediate
parameters are not considered. Consequently, in the pres-
ence of noise, the intermediate solution does not satisfy the
congtraints, and the accuracy of the fina solution is rela
tively poor [10]. Due to these difficulties the calibration
results obtained in Section 2.1. are not accurate enough.

With real cameras the image observations are always
contaminated by noise. As we know, there are various error
components incorporated in the measurement process, but
these error components are discussed more profoundly in
[4]. If the systematic parts of the measurement error are
compensated for, it is convenient to assume that the error is
white Gaussian noise. Then, the best estimate for the cam-
era parameters can be obtained by minimizing the residual
between the model and N observations (U;, Vj), where i =
1,..., N. In the case of Gaussian noise, the objective func-
tion is expressed as a sum of squared residuals:



N N
2 2
F = iZl(Ui—ui) +iZl(Vi—vi) (10)

The least squares estimation technique can be used to
minimize Eq. (10). Due to the nonlinear nature of the cam-
era model, simultaneous estimation of the parameters
involves applying an iterative algorithm. For this problem
the Levenberg-Marquardt optimization method has been
shown to provide the fastest convergence. However, with-
out proper initial parameter values the optimization may
stick in alocal minimum and thereby cause the calibration
to fail. This problem can be avoided by using the parame-
ters from the DLT method as the initial values for the opti-
mization. A global minimum of Eq. (10) is then usually
achieved after afew iterations.

Two coefficients for both radial and tangential distortion
is normally enough [4]. Our experiments have also shown
that the linear distortion in modern CCD arrays istypically
negligible. Thus, the parameters by, b, can be usualy left
out, and totally eight intrinsic parameters are then esti-
mated. The number of extrinsic parameters depends on the
number of cameraviews. Using a 3-D target structure, only
asingle viewpoint is required. In the case of a coplanar tar-
get, a singularity is introduced that limits the number of
parameters that can be estimated from asingle view. There-
fore, multiple views are required in order to solve all the
intrinsic parameters. The number of extrinsic parametersis
now added by six for each perspective view.

2.3. Correction for the asymmetric projection

Perspective projection is generally not a shape preserv-
ing transformation. Only lines are mapped as lines on the
image plane. Two- and three-dimensional objects with a
non-zero projection area are distorted if they are not copla-
nar with the image plane. This is true for arbitrary shaped
features, but in this article we are only concerned with cir-
cles, because of their simple analytic formulation. Another
reason is that they are very common shapes in many man-
made objects.

The center points of the circles are often located from
the images with subpixel precision, but the distortion
caused by the perspective projection is not typically con-
sidered. Perspective projection distorts the shape of the cir-
cular features in the image plane depending on the angle
and displacement between the object surface and the image
plane. Only when the surface and the image plane are par-
dlel, projections remain circular. These facts are well-
known, but the mathematical formulation of the problem
has been often disregarded. Therefore, we shall next review
the necessary equations.

Let the coordinate system Q4 (X, Y, 2) O O 3 be centered
in the camerafocus O, and let its Z-axis be perpendicular to
the object surface M, (see Fig. 1). The rays coming from

Figure 1. Perspective projection of a circle.

the circle 'y that is located on the surface M, form a
skewed cone, whose boundary curve C can be expressed as
follows:

(X-aZz)®+(Y-p2)* = y°Z° (11)

Parameters a and [3 specify the skewness of the cone in
Xand Y directions and the parameter y specifies the sharp-
ness of the cone. Thus, if the distance from the camera
focus to the object surface is denoted by d, the circle equa-
tion becomes (X - ad)? + (Y - Bd)? = (yd)2.

The camera coordinate system Q, (x, y, 2) O 0%isaso
centered in the camera focus, but its z-axis is orthogonal to
theimage plane M,, and its x- and y-axes are parallel to the
image axes u and v. Thus, the transformation from Q, to Q4
is expressed by using the following rotation:

X a1 Ay A3l | x
Y| = |8y 8 x| |Y (12)
Z 81 Az Agy| L2

where the vTectors (249, 8oy, a31]T » [315 8 asz]T , and
[a;3 8y ag3]  forman orthonormal basis. Now, we can ex-
press Eq. (11) in camera coordinates

2
[(a; —0ag)x +(a;; —0ag)y + (a;3— 0ags)7]

+ [(@y1 ~Bag))x + (3, —Bagy)y + (ags —Bagy)]” (13)
2 2
= Y (ag X+ agy + ag?)
Let us denote the focal length, i.e. the orthogonal dis-
tance between O and M5, by f. Then, the intersection I', of
Cand N, isexpressed as:

(N + K2 =r?)x% + 2(kl + np—rs)xy + (12 + p? = %) y?
+2(km+ng—-rt)x+2(Im+ pg—st) +m2+qz—t2 =0 (14
where
k = a;;—tag
| = a,,—ta,,
m = (aj3—tagy)f

n = ay; —Sag I =yas
p = a,,—sas, S = yag,
g = (ayz—sag)f  t = yagf
We notice from Eq. (14) that the projection is a quadratic
curve and its geometrical interpretation can be acircle, hy-
perbola, parabola, or elipse. In practice, due to the limited



field of view the projection will be acircle or elipse.
From Eq. (14) the center of the ellipse (i, V,) can be
expreﬁdas
(kp nl)(lqg—pm) — (ks—lr)(tl—ms) (ns— pr)(Wp gs)
(kp— nI) —(ks— Ir) —(ns— pr) (15)
(kp nl)(mn—Kkq) — (ks—lr)(mr kt) —(ns—pr)(gr —nt)

(kp— nI) —(ks—lr) —(ns— pr)

In order to find out what is the projection of the circle
center, let us consider a situation where the radius of the
circleis zero, i.e. y = 0. Consequently, r, s, and t become
zero, and we obtain the position of the projected point that
is due to the symmetry of the circle aso the projection of
the circle center (U, V) :

Uy = (lg—pm)/(kp—nl) V, = (mn—kaq)/(kp—nl) (16)

For non-zero radius (y > 0) there are only some special
cases when Egs (15) and (16) are equal, e.g. therotation is
performed around the Z-axis (az; = ag, = 0). Generally, we
can state that the ellipse center and projected circle center
are not the same for circular features with non-zero radius.

Ellipse fitting or the center of gravity method produces
estimates of the ellipse center. However, what we usually
want to know is the projection of the circle center. As a
consequence of the previous discussion, we notice that the
location is biased and it should be corrected using Egs (15)
and (16). Especialy, in camera calibration this is very
important, because the circular dot patterns are usually
viewed in skew angles.

There are at least two possibilities to correct this projec-
tion error. The first solution is to include the correction
(U, —Ug, V. —V,) to the cameramodel. An optimal estimate
in a least squares sense is then obtained. However, this
solution degrades the convergence rate considerably, and
thus increases the amount of computation. Another possi-
bility is to compute the camera parameters recursively,
when the parameters obtained in the least squares estima-
tion step are used to evaluate Egs (15) and (16). Observed
image coordinates (U;,V;) are then corrected with the fol-
lowing formula:

Ui = Uj=Dysy (g —tg ;)
Vi = Vi=Dy(V ;=Yg )

After correction, the camera parameters are recomputed.
The parameters are not optimal in aleast squares sense, but
the remaining error is so small that no further iterations are
needed.

The significance of the third calibration step is demon-
strated in Fig. 2 @) with an image of acubic 3-D calibration
object. Since the two visible surfaces of the object are per-
pendicular there is no way to select the viewing angle so
that the projection asymmetry vanishes. Fig. 2 b) showsthe
error in horizontal and vertical directions. The error in this
caseisquite small (about 0.14 pixels peak to peak), but it is
systematic causing bias to the camera parameters.

(17)
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Figure 2. a) A view of the calibration object. b) Error
caused by the asymmetrical dot projection.

3. Image correction

The cameramodel given in Eg. (6) expresses the projec-
tion of the 3-D points on the image plane. However, it does
not give adirect solution to the back-projection problem, in
which we want to recover the line of sight from image
coordinates. If both radial and tangential distortion compo-
nents are considered, we can notice that there is no analytic
solution to the inverse mapping. For example, two coeffi-
cients for radia distortion cause the camera model in Eq.
(6) to become afifth order polynomial:

u = Dus%(kza? + 2k2f1i3\7i22+ Kol ¥+ kg T + kg 6,97
+3p,U; +2p, 0V + p2\7 +0;) + ug
2. (18)

v, = Dy (Kol ¥ + 2k, T v + kW + Ky 070 + Ky ¥

+ |01ai2 +2p,V; + 3|°1Vi2 +V) + Vg

We can infer from Eq. (18) that a nonlinear search is
required to recover (U, V;) from (u;,v;). Another aterna-
tive is to approximate the inverse mapping. Only few solu-
tions to the back-projection problem can be found from the
literature, although the problem is evident in many applica-
tions. Melen [5] used an iterative approach to estimate the
undistorted image coordinates. He proposed the following
two-iteration process:

g = g;"-93(q;"-3(q;")) (29)
wherevectors g;" and q;' contain the distorted and the cor-
rected image coordinates respectively. The function 3(q)
representsthedistortioninimagelocation g. In our teststhis
method gave a maximum residual of about 0.1 pixels for
typical lens distortion parameters. This may be enough for
some applications, but if better accuracy is needed then



more iterations should be accomplished. model,N tie-points(u;, v;) and(u;, V') covering the whole
A few implicit methods e.g. a wvplane method as pro- image area must be generated. In practice, a grid of about
posed by Wi and Ma [9] sole the back-projection prob- 1000 - 2000 points, e.g. 40 x 40, is enough. Let us define

lem by determining a set of nonyshical or implicit u; =

parameters to compensate for the distortion. Due tae lar [—&'r7, —0;'r, —20,%, —(r? + 28%), Gyr}, 6,r7, G;r, ﬂlrlz]T
number of unknen parameters, this technique requires a v, =
dense grid of obseations from the whole image plane in [_c,i-ri'{ v I, (r + 27, 2, 20 VwV.f|4| v, r|2, A f.21 ~Ir|2]T
order to become accurate. Wever, if we knav the plysi- _

= [Uq, Vs s Uy Vs oeny Uy, VN]

cal camera parameters based ®mplieit calibration, it is
possible to sol the unknan parameters by generating a P = [21 82 83 84, a5, 8 a7, agl’
dense grid of pointéli;, v,) and calculating the correspond- €= B

ing distorted image coordinatés, v,) by using the cam- [0y =0y, Vo' =¥y, .., G’ =T, V' =
era model in Eq. (6). Based on the implicit camera modelUsing Egs (21) and (22) the following relation is obtained:
proposed by Wi and Ma [9] we canx@ress the mapping e=Tp 23)

from (u;, v;) to (@, ¥) as follaws: The vectop is now estimated in a least squares sense:

(1), K
an uy, Z( a; ~ T_-1 71
D,ZOSi;<N e G = 0=iFksN : pP=(TT) Te (24)
' Ek afﬁ)u‘vk ' Ek A UiV, The parameters computed based on Eq. (24) are used in
0<jFksN 0<jFksN

Eqgs (21) and (22) to correct arbitrary image coordinates (
Wei and Ma used third order polynomials in thejper-

V). The actual coordinates are then obtained by interpola-
iments. In our tests, we noticed that it only\pdes about  tion based on the generated coordinatésy,) and

0.1 pivel accurag with typical camera parameters. This is (G, V') .
quite cleay since we hae a camera model that contains
fifth order terms (see Eq. (18)). Thus, at least fifth order
approximations should be applied. Th|s Ieads to equations
where each set of unkwa parameter$a } includes 21 Explicit camera calibrationx@eriments are reported in
terms. It can bexpected that there are also redundant [4]. In this section we concentrate on the fourth step, i.e.,
parameters that may be eliminated. After thorough simula-the image correction. Let us assume that the first three steps
tions, it was found that the folleing expression compen- have produced the pisical camera parameters listed in
sated for the distortions so that the maximum residual errofTable 1.

was less than 0.01 @k units, @en with a substantial

f e e e T
iv - U= Ups V' = V0

4. Experiments

: . ) f [mm] Ug [pixels] | vg[pixels]
amount of distortion present S:iJ.OOSQ 8.3431 0367.6093 0305.8503
H _1 o'+ l]i'(alri2 + a2ri4) +2a50,'V;' + a4(ri2 + zai'z) (21) Ky [mm™@] | kp[mm™] | py[mm™] | po[mm™]
y .~ ~ o~ -3.186e- 4.755e- -3.275e- -1. -
v, G G+ Vi'(alriz N a2ri4) + aa(ri2 N 2Vi'2) + 28,0 3.186e-03 55e-05 3.275e-05 565e-05

and Table 1. Physical camera parameters.
= (a5r-2+a6f1-' +a7\7-'+a8)r-2+ 1 (22) First, we generate an equally spaced grid (40 x 40) of
where (u _UO)/(DuSu) V' = (v-vp)/D,, and tie-points (i, v;) that caver the entire image and a small

%, If we compare th|s implicit inverse model Portion outside the &fctive area so that we can guarantee

to the camera model in Eq. (6) we notice that also the in-good results also for the bordegi@ns. The corresponding
verse model has components which resemble radial and tarflistorted coordinateg;, ;') are obtained by applying Eqs
gential distortions. The counterparts for the distortion (4) and (5). The parametess,..., ag are then sokd with
parameterkl, k2, P1 andpz are the Coefﬁciental,___'a4_ the LS method in Eq (24) The results aﬁ&giin Table 2,
The model (21)-(22) contains On|y e|ght unimo and the flttlng residual between th@erse model and the

parameters instead of 63 parameters that were in the origit'ue points is shen in Fig. 3.

nal fifth-order model in Eq. (20). Back-projection using a a ag a,
this model will require less com_pl_Jtatlon than the iteeati 8.3286-03| 1.670e-04] 3.269e-06| 1.5686-05
approach suggested by Melervigg also more accurate

. . ag dg ay dg
results. The parametess,..., ag can be soled either itera-
tively using the least squares technique, when the smallesf__2-202€-04| -1.518e-07] -3.428e-08| -1.151e-02

fitting residual is obtained, or directiwhen the result is ~ Table 2. Parameters of the inverse model.

very close to the optimal.

_ The maximum error in the fitting residual is in this case
In order to sole the unknan parameters for thevarse

less than 0.0005 peks. For more intensie distortion, the
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Figure 3. Fitting residual.

error will be slightly biggerbut under realistic conditions
always less than 0.01 mls as the feature detection accu-
ragy (std) was about 0.02 pets [4].

In the secondx@eriment, we generate a uniformly dis-
tributed random set of 2000 points in the image area. These
points are first distorted and then corrected with therge
model. The error originating in this process is represented
as histograms in Fig. 4 in both horizontal arettical
directions. The error seems tovhahe same magnitude as
the fitting residual. Therefore, we catfiiraf that the inter-
polation between the tie-points does nogrdede image
correction noticeably

5. Conclusions 3]
A four-step procedure for camera calibratioaswpre-
sented in this article. This procedure can be utilizeiiz v
ous machine vision applicationsytht is most beneficial in [4]
camera based 3-D measurements and in robot vision,
where high geometrical accuyais needed. This procedure
uses gplicit calibration methods for mapping 3-D coordi- 5
nates to image coordinates and an implicit approach for
image correction. The xperiments in the last section
shaved that the error caused by thedarse model is rogi-
gible. A Matlab toolbox for performing the calibration pro-
cedure is implemented and it will beadlable through the
Internet.
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