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Abstract

We present a slightly modi�ed scale space corner detection
algorithm. We then describe re�nement methods for the
localized features. One re�nement operates in scale space,
the other along the image gradient. Finally, we summzrize
the results of these algorithms towards improving camera
calibration performance.

1 Introduction

We began our work with three observations.

1. Detection of features such as corners is often the �rst
step in camera calibration methods [21, 3].

2. Camera calibration from point correspondences is quite
sensitive to noise in the coordinates of the points [15, 2].

3. While much work has been to characterize and reduce
the sensitivity of calibration methods [1, 13, 7], it would
improve the calibration if we can improve the perfor-
mance of the raw feature detectors [8].

Given these observations of our own work, we investigate
corner detection and ways to improve it. We then conduct an
experiment on the e�ect we have on the camera calibration
methods.

2 Related Work

2.1 Corner Detection

While there are many methods for corner detection, we fo-
cus this brief summary on methods that use intensity gradi-
ents and only mention recent methods, such as those based
on topographic analysis [12] or morphological operators [9].
Broad reviews [18, 17, 5] and more detailed analysis of image
geometry techniques [22] are available.
The corner detectors with which we have been working

use image intensity derivatives to determine what the \cor-
nerness" of a point is. A corner should have high derivatives
in both directions along the pixel grid. The Plessey opera-
tor [6] is one commonly-used example of such an operator,
and was the starting point for our work. Similar operators
have frequently been seen in the literature [22, 20, 4].
The Plessey operator works by �nding the �rst derivative

in each of the image axis directions, which we will refer to
as x and y. The following matrix is then constructed.
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The response function is then given as

R = detM � ktraceM: (1)

Previous authors have found this operator to be good at
detecting corners, but not as accurate as desired at localizing
the corners [23, 22].
Still others use second derivatives [20]. Scale-space detec-

tion techniques for edges and corners also have a prominent
place in the literature [10, 16, 14]. Searching in scale space
implies using a varying window size over which to approxi-
mate the derivatives. Wang and Brady [20] noted that really
one would like to use an in�nitely small window, which can
be apporximated by extrapolating from a series of smaller
and smaller windows. The trade-o� is that smaller windows
are more susceptible to image noise.

2.2 Camera Calibration

Camera calibration is a large topic and we will again give
only the brief treatment necessary to set up our results.
Tsai's algorithm [19] uses image sightings of known 3D
points to constrain both intrinsic and extrinsic parameters
of the camera. More recent work has focused on derivatives
of the Eight Point Algorithm [11], which uses only corre-
sponding image points. The original algorithm was generally
found to be quite susceptible to noise, although this problem
can be reduced with normalizing transformations [7]. The
original algorithm assumed the camera had known intrinsic
parameters; extensions erased this assumption to form the
fundamental matrix [13], which is a homography between
two image planes. Much work [13, 1] has been devoted to
analyzing the stability and error in the fundamental matrix.
While this work is certainly important, it should be self-
evident that the better the image correspondence data used
by any algorithm to compute the fundamental matrix is, the
better the answer the algorithm will compute.
It has been shown [8] that for circular landmarks, a per-

spective distortion can move the projection of the center of
the landmark away from the centroid of the pixels that con-
tain part of the landmark. It is this type of error that we
hope to eliminate for systems that rely on corner detectors,
and to demonstrate improvement in the camera calibration.

3 Scale-Space Feature Detection

3.1 Single-scale operator

As noted above, we began our work by using the Plessey
operator to detect corners. Looking again at Equation 1,
we note that the determinant of the matrix contains the
negative of the product of the two image derivatives. If
both these values are large, this will push the operator value
towards the negative, which is not supposed to indicate an
edge. Our �rst change, then, is to simply change the sign,
so that we no longer use the determinant of the matrix.

R = AB + C
2
� ktraceM: (2)

where A, B, and C are de�ned as in Equation 1. This op-
erator performed well on images of our calibration target



(Figure 1).

Figure 1: Our calibration target, with corners detected.

The operator is computed on the pixel grid and then in-
terpolated to achieve sub-pixel resolution.

3.2 Localization in Scale Space

Following the lead of Wang and Brady [20], we apply this
operator at scales of 3� 3, 5� 5, ... 11� 11. We then �nd a
least-squares quadratic curve in scale space to compute (sep-
arately) the estimated location for the x and y coordinates
of the corner for a single-pixel window (SSE-1 algorithm)
and for an in�nitessimally small window (SSE-0 algorithm).
Working in scale-space simulation with ray traced images,

we notice a correlation between the error from the detected
to the ideal corners and the image gradient. Not surprisingly,
the larger the window, the more strongly correlated the gra-
dient and the error vector were. As the window reduces to
3� 3, the correlation is still evident, but not overwhelming.
For the 11�11 windows, all 144 test points in our simulation
had a dot product of at least 0.9 between their error vector
and the image gradient. For the 3 � 3 window, about 45%
had a dot product in that range, while the remaining points
were spread over the range of 0.35-0.90 (Figure 2). Keep in
mind that these images are nearly noiseless, as the ray traced
simulation does not include adding random noise. Whether
such a correlation exists in real images, we can only guess.
However, this does give rise to an e�cient search algorithm
to attempt correction of the feature detector.
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Figure 2: Histogram of the dot product between the error
vector from the detected to the ideal landmark and the image
gradient. This shows a signi�cant correlation between the
two vectors. This histogram contains all the test points, even
though it covers less than half the range of the dot product.
Each x represents two sample points.

4 Re�nement of Feature Localization

Our goal in this work was to see what e�ect the extrapola-
tion in scale space would have on the camera calibration. For
calibration, we manually construct a 2D model for the tar-
get, print it, and then take eight photographs. We then feed
the known 2D model and the detected corners into Zhang's
calibration method [21]. This method is a derivative of the
fundamental matrix approach. We also search along the im-
age gradient for a single-parameter transformation of the
detected features to see if this improves our calibration.

4.1 Metric for Camera Calibration

First, we need a metric for camera calibration. In the
absence of any ground truth, we use the following self-
consistency metric to measure the success of our calibration.
Note that the input information is only the inpyut coordi-
nates of the detected features. While it is true that when
using Zhang's calibration method, we could enforce a coordi-
nate system on the target and derive known 3D coordinates,
this is not true of all calibration methods, so we prefer to
avoid this assumption.
The image coordinates and the camera calibration enable

us to compute a 3D location for each calibration point in the
target. We use the point that minimizes the sum of squared
distances between the point estimate and the rays which are
given as corresponding for each point (one ray per point from
each image). A metric of camera calibration error, then, is
the average or maximum distance from any computed 3D
point to any of its formative rays.
We then project these 3D points back onto the images.

We then have a 2D error metric: distance from the projected
point to the detected feature location. We can consider the
average and maximum values.

4.2 Equipment

We did this for two cameras. First was a Kodak DCS460,
which has a 6 Mpix grayscale sensor behind a Bayer �lter
color mosaic. We demosaic the images to a grayscale image,
then for reduced memory consumption in our end applica-
tions, we typically reduce the resolution by a factor of two
in both dimensions, leaving us with a 768 � 512 grayscale
image for calibration. (Our applications use color, but we
�nd that demosaic error interfere with calibration and color
adds nothing to the calibration process.) These images are
relatively free of noise., as you can see in Figure 1.
The second camera was a DragonFly Digital Video Cam-

era from Point Grey research http://www.ptgrey.com. We
use this in VGA mode, capturing 640x480 frames. We cap-
tured at 7.5Hz in this experiment.

4.3 Calibration improvements

The results from our experiments are summarized in Table 1.
The DCS460 has very little noise, so as Wang and Brady

predict, there is very little to be gained by using extrapola-
tion in scale space. In fact, as you can see in the table, it
actually increases the calibration error. This is rather sur-
prising, but given that the 3� 3 window operator yielded a
calibration with under 1.0 pixels of maximum reprojection
error, we can hardly expect signi�cant improvement.
We search the gradient at a resolution of 0.05 times its real

length. The gradient method yielded a slight improvement
to the calibration. Upon seeing this result, we opted to try



Algorithm DCS460 DragonFly
Raw 5x5 1.019625 1.399554
Raw 3x3 0.956231 2.279644
SSE-1 1.380844 1.706845
SSE-0 1.805181 2.496607
Grad 0.954192, t = 1:0 1.349952, t = 1:9
Conj 0.908742, t = 1:3 1.388987, t = 1:9

Table 1: Results from our experiments to improve camera
calibration by improving feature localization accuracy. The
error metric used here is the 2D metric described in Sec-
tion 4.1, with a value in pixels. However, only the maximum
error is shown. The average error shows similar results, al-
though not always at the same location along the gradient or
conjugate gradient direction. We are still investigating these
methods. Note that the image plane of the Kodak camera is
subsampled to 768�512 and the DragonFly camera captures
VGA-resolution video frames.

the conjugate gradient, shown in the last line of the table. It
is a little surprising that the conjugate gradient search found
a better solution than the gradient search, since our simu-
lations showed that the correlation was strongest between
the gradient direction and the error in the feature detector.
We are still investigating this result. Both improvements
are modest for the DCS460. The table gives the parameter
t that measures the length of the vector in the direction of
the gradient or conjugate gradient that produced the best
result. We show only maximum error in the table, and the
average error shows similar results. The parameter t is not
the same for the average, and the search space is very at.
For the DragonFly, we see that the 3 � 3 window per-

forms more poorly than the larger windows, an indicator
that image noise is causing more di�culty for the calibra-
tion process. It also implies that our extrapolation process
should rely less on the detected features from this small win-
dow size. We thus extrapolate from only the 5�5 and larger
window sizes when running the SSE-1 version of the algo-
rithm. The problem this creates, of course, is that we are
extrapolating to well outside the range of the original data,
and the approximation is less certain, as evidenced by the
performance.
The gradient search and conjugate gradient searches again

found a minor improvement over the best windowed search.
It is interesting to note that in this noisier image, the gradi-
ent search did better than the conjugate gradient.

5 Summary

We have attempted two algorithms (plus variations) to im-
prove camera calibration performance by attempting to re-
�ne localized feature coordinates. The scale space algorithm
has yet to demonstrate improvement, perhaps needing more
intelligence to handle noisy image data. The (conjugate)
gradient-based search method seems to show some promise,
although it is unclear why the improvements come in the
conjugate gradient direction. Still, this seems a promising
direction for further research.
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