SETT Visualizations:

Development of Graphical Utilities for Explaining SETI

Immanuel Buder

Computer Systems Lab

June 3, 2003

Abstract

The SETI (Search for Extra-Terrestrial Intelligence) program has been active since
1960[1]. It publicises itself well with many text-based sites. However, few graphical
utilities exist to explain the program. The purpose of this project is to develop such

utilities using OpenGL and possibly POV-Ray.

1 List of Terms
e SETI
e OpenGL
e POV-Ray

e Drake Equation

o C++

e Project Phoenix

e Project Argus

e SETIQhome

e milky

e explorer

e strategy

e home

e breakup

2 Introduction

The SETI program is an effort to detect communication or other signals sent by intelligent
civilizations from other star systems. It has been active since 1960[1] and uses mostly radio
astronomy. Many SETI organizations depend on donations to keep running. Therefore, it
is important for them to make the public aware of their efforts. There are many text-based
explanations of the SETI program, its philosophy, its method, what it hopes to accomplish.
For example, Carl Sagan, a famous SETI advocate, presented his cast for the SETI pro-
gram in ”"Can SETI Succeed” [8]. However, few of these explanations are supplemented with

graphics. The purpose of this project is to develop graphical utilities to help SETI explain

its efforts to the public. Such utilities could be used by SETI organizations for fundraising
and public information activities. The project will avoid more technical aspects not needed

for a basic understanding. Current data will not be discussed.

2.1 Background

”In early November, 1961, a group of scientists and engineers met at the Green Bank Ob-
servatory to discuss the possibility of using the techniques of radio astronomy to detect
evidence of intelligent life outside our Solar System.”[2] The Drake Equation, a tool used to
estimate the number of communicating civilizations in the galaxy, was first discussed here.
At the same time, the first SETT search, Project Ozma, was conducted at the National Radio

Astronomy Observatory.[1]

2.2 Other SETT Utilities

There are very few graphical utilities capable of explaining the goals and reasoning of the
SETI program. The SETI@home[4] program does have an advanced graphical display; how-
ever, it displays current SETI data. Data display is not what is needed, nor is it in the scope
of this project. Before raw or even analyzed data can be understood, a user must grasp the

basic principles of SETT.

3 Proceedure

3.1 Timeplan
e Sept. 9-20: Basic Project Design and Proposal
e Sept. 23-Oct. 4: Develop milky
e Oct. 7-Nov. 22: Develop explorer
e Nov. 25-Dec. 13: Develop strategy
e Dec. 16-Jan.24: Construct poster
e Jan. 27-Feb. 28: Develop home
e Mar. 3-21: Develop breakup
e Apr. 6-May 16: Analysis and Conclusions

e May 27-June 17: Write Technical Paper

3.2 Resources

The following programming tools were used:
e GNU C++
e OpenGL
e POV-Ray

The construction of each program will be described separately.

4

3.3 milky: The Drake Equation Graphical Simulator

The Drake Equation graphical simulator (milky.cpp, see Appendix A) was developed in C++
using the OpenGL graphics library. The first step was to create a graphics shell, a standard
C++ program that creates a graphics environment. Next, special coding was needed to
impliment textures which were used to display the galaxy in background. Then, the Drake
Equation was added in the form of an alien civilization density. The probability of finding
an alien civilization in a given grid square was set equal to the density. Finally, a control

window was added to allow the user to change Drake factors.

3.3.1 The Drake Equation
The Drake Equation|2], often written as
N = prneflficha

is a way to estimate the number of sources that SETI might detect. The purpose of the

drake equation is to identify the factors that influence this number:
e R is the rate at which new stars are formed
e f, is the fraction of such starts that have planets
e n. is the fraction of such planets which can support life
e f; is the fraction of such planets on which live develops
e f; is the fraction of biospheres where intelligence arises

e fc is the fraction of intelligent civilizations which develop interstellar communications

. I:I.' SETI ‘I.ﬁsualizatiuns

LARINLIS AT

Figure 1: The black dots represent squares with alien civilizations.

== T

Figure 2: The control panel for milky.

e L is the length of time that such a civilizaion remains in communication

3.3.2 Code Analysis

The code for milky can be broken down by purpose:

Texture Loading

Control Panel

OpenGL Initialization

Drake Equation Display

3.3.3 Texture Loading

The actual code to convert an image file in targa format to an OpenGL texture (tgaload.h)
is not shown here. It was gratefully provided by classmate Joey Turner. The implimentation
was then relatively easy, since the texture was a rectangle being mapped to another rectangle.
Although the code is relatively short, it took several weeks to create, mostly spent finding

the correct texture loading header.

3.3.4 Control Panel

This contains the largest number of lines of code; however, they are largely routine. The
"display” and "mouse” functions (see Appendix A) all have the same format, and most of
the lines could be reused. Positioning the buttons in the control window was the hardest

part since this programmer does not think visually in pixels.

3.3.5 OpenGL Initialization

This code is perhaps the least understandable since OpenGL often requires strange and un-
usual initialization patterns. Several weeks were spent in experimentation to find an initial-
ization sequence that would allow textures and colors. Textures were implimented; however,
colors proved to be impossible without an unreasonable expenditure of time. Therefore they
were abandoned. The initialization code, with a few modifications, was used for all OpenGL

parts of the project.

3.3.6 Drake Equation Display

The actual display code is rather short because it only prints dots on the screen. The
background is already drawn as part of the texture code. Some time was spent modifying

this code in an attempt to draw the dots in color. It failed.

3.4 explorer: The Expanding Civilization Simulation

The expanding civilization simulation (explorer.cpp, see Appendix B) used the same shell
developed for milky. Modifications (such as double buffering) had to be made to allow
for animation. Then, the various expansion models (see movel...move4, Appendix B) were

introduced. Finally, a counter was added to compare the various models.

3.4.1 Code Analysis

The major parts of the explorer code are

e OpenGL Initialization

| | | EETI ﬁsualizatiuns

B irERL

r SALTT

L : F-ﬂrtll ||'|||:|1r':|{,_:_ !""rl.

-l

Corann, Aav

s

Figure 3: The black area has been taken over by an explorer civilization.

e Texture Loading
e Evolution
e Movement Algorithm

The first two were taken with a few modifications from milky.

3.4.2 Evolution

The evolution code uses a simple algorithm: Move across the screen. For each planet where
there are aliens, call the movement algorithm. If the movement algorithm decides that those
aliens will colonize, it will set a special flag in the planet where they are colonizing. Once

all planets have moved, the flags will be converted to new aliens.

3.4.3 Movement Algorithm

There are four separate movement algorithms. The first simulates aliens who move in a
random direction, but always move if possible. The second simulates aliens who choose a
random direction and move only in that direction. The third simulates aliens who always
move in the same direction if possible, then move in other directions when otherwise. The
fourth simulates the same aliens as the first, except adds a hesitation factor such that the

aliens may decide not the colonize each turn.

3.5 strategy: Two Ways to Do SETI

The strategy demonstration uses POV-Ray. Two images, stratl and strat2 (see stratl.pov,
Appendix C and strat2.pov, Appendix D) were created. The first deals with a targeted search

10

like Project Phoenix[3], the second with an all-sky search like Project Argus[l]. A method
of symbolically representing the telescopes was required. The programmer chose cones since
they naturally correspond to a telescope’s field of view. Also, a new implimentation of
textures was required because POV-Ray treats textures differently from OpenGL. Once the

components were created, several tests were needed to optimize their arrangement.

3.5.1 Targeted Search

The targeted search strategy identifies a few candidate stars as having a high probability
of supporting communicating life. Age, brightness, and possibility of planets are among
the criteria used to select the candidates. The targeted search uses a small number of very
large telescopes. They have very high sensitivity; that is they can detect very weak signals.
However, they have a small angle of view; they cannot see much of the sky at once. When

the location of sky to be studied is known, small angle of view is not a great limitation.

3.5.2 All-Sky Search

The all-sky search makes no a priori assumptions about where communicating life might be
found. Because the entire sky must be considered, small angle of view becomes a limiting
factor. The amount of sky visible at one time determines how long it takes to search the
entire sky. Therefore a larger number of smaller telescopes with larget angles of view is
the optimal method for conducting an all-sky search. Additonally, smaller telescopes are
cheaper so many more can be purchased with the same amount of money used to buy
one larget telescope (e.g. for a targeted search). However, the lower sensitivity of smaller

telescopes is still limiting. Weak signals that a targeted search could detect might be missed

11

Figure 4: The image for a targeted search.

Figure 5: One frame from the home animation

by an all-sky search.

3.6 home: Why Does SETI@home Look for Gaussians

home, the first in a series of SETI@Qhome[4] utilities, also uses POV-Ray. The symbolic
representation developed for strategy was reused here. The new element, a signal source,
is represented by a blue sphere. Since the purpose of this program is to show how signal
strength changes with time, static images like those of strategy were inadequate. A different
technique was used to develop animation in POV-Ray. A clock variable was invluded in the
source, causing one of the image parameters to vary with time. The povray renderer was
invoked multiple times with different values of the clock variable. An auxiliary C++ program

was used to auotmate this task. The POV-Ray source home.pov is given in Appendix E.

13

Figure 6: One frame from the home animation

Figure 7: One frame from the home animation

14

Figure 8: One frame from the home animation

3.7 breakup: How Is SETI@Qhome Data Distributed

breakup, the second in the series op SETI@home[4] utilities, uses C++ and OpenGL. The
OpenGL framework is the same that was developed for milky and explorer. breakup shows
how the data gathered by the Arecibo telescope is divided into work units for distribution
to individual participants. The main display is a frequency vs. time chart with the data
selected for a work unit highlighted. The user can input new work unit specifications, and
the program will calculate the new work unit size. The C++ source breakup.cpp is given in

Appendix F.

4 Results

Several utilities were developed. milky gives a graphical depiction of the Drake Equation.

explorer shows how a colonizing alien civilization might develop. strategy shows the different

15

M | SETI Visualizations

Frequency

Figure 9: The frequency vs. time chart for breakup.

strategies used by different SETI programs. home explains the gaussian waveform that
SETI@home searches for. breakup shows how data is divided into work units. These should

help SETT explain itself.

5 Conclusion

It is unlikely that any SETT organization would use SETI Visualizations utilities for its public
information campaign. The quality of the programs is not an issue here. The programs
need to be packaged like commercial software, with manuals and technical support. To
provide extensive services, a small company might be formed, perhaps with seed money
from interested SETT organizations. This company would continue to develop the programs

to the level generally expected of commercial software.

References

[1] The SETI League, Inc., ”General Information”, 27 July 2002.

http://www.setileague.org/general /general.htm (September 12, 2002)

[2] Jones, Douglas S., ”Beyond the Drake Equation, 26 September 2001.

http://www.stationl.net/DouglasJones/drake.htm

[3] SETI Institute, ”Frequently Asked Questions”, 5 December 2002.

http://www.seti.org/faq.html (December 12, 2002)

17

[4] SETI@home, ”Learn About SETI@home”, 2 July 2002

http://setiathome.ssl.berkeley.edu/learnmore.html (February 25, 2003)

[56] Powell, Richard, ” A Map of the Milky Way”, 1 March 2003

http://www.anzwers.org/free/universe/index.html (April 8, 2003)

[6] Anderson, David P. et al., ?SETI@home: An Experiment in Public-Resource Com-
putin”, November 2002

http://setiathome.ssl.berkeley.edu/cacm/cacm.html (April 8, 2003)

[7] NeHe Productions, ”OpenGL Tutorials”, 22 April 2003

http://nehe.gamedev.net/ (April 22, 2003)

[8] Sagan, Carl and Mayr, Ernst, ”Can SETI Succeed”, 1995
http://www.planetary.org/html/UPDATES /seti/Contact/debate/default.html (April

22, 2003)
[9] Sagan, Carl. Cosmos. Random House: New York. 1980.

[10] Korpela, Eric et al., ”SETI@home: Massively Distributed Computing for SETI”.

http://www.computer.org/cise/articles/seti.htm (May 29, 2003)

6 Appendices

A milky.cpp

// SETI Visualizations

18

// by Immanuel Buder

#include <stdlib.h>

#include <iostream.h>

#include <GL/glut.h>

#include "tgaload.cpp" //routine for loading texture from targa

#include <time.h>

int mainwindow,controlwindow, Rbutton, fpbutton, nebutton;
double R, fp, ne, f1l, fi, fc, L; //Drake factors
double P; //civilization density

GLint height, width; //window size

GLuint map; //texture, galaxy map
GLint cheight, cwidth; //controol window size
void display (); //main display function

void outtext (double x, double y, double z, char *string, void *font);

void drakeinit() {

R= 10; //known with some accuracy
fp = .2; //reasonable estimate
ne = 1; // good... if we are average

19

fl= 1; //optimistic
fi = .9; //optimistic
fc = .1; //blatant guess

L = 1000; //low side of Dolphin range

void loadtextures () { //load texture
glPixelStorei (GL_UNPACK_ALIGNMENT,1);
ngint (GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST) ;

map = tgaloadAndBind ("milky.tga",TGA_DEFAULT); //map identifies texture

void controldisplay () {

glClear (GL_COLOR_BUFFER_BIT) ; //reset to background

void Rdisplay () {

glClearColor (.6,.1,0,0); //background color

glClear (GL_COLOR_BUFFER_BIT); //set background
glloadIdentity(); //put basic matrix into memory
glOrtho (0,10,0,10,-1,1); //dimensions of view

glColor3f (0,0,0); //write in black

20

outtext (1,3,0,"R",GLUT_BITMAP_TIMES_ROMAN_24);//label

glFlush() ; //force drawing

void fldisplay () {
glClearColor (.6,.1,0,0);
glClear (GL_COLOR_BUFFER_BIT);
glloadIdentity();
glOrtho (0,10,0,10,-1,1);
glColor3f (0,0,0);
outtext (1,3,0,"f1",GLUT_BITMAP_TIMES_ROMAN_24);

glFlush();

void fpdisplay () {
glClearColor (.6,.1,0,0);
glClear (GL_COLOR_BUFFER_BIT);
glloadIdentity();
glOrtho (0,10,0,10,-1,1);
glColor3f (0,0,0);

outtext (1,3,0,"fp",GLUT_BITMAP_TIMES_ROMAN_24);

21

glFlush();

void Ldisplay () {
glClearColor (.6,.1,0,0);
glClear (GL_COLOR_BUFFER_BIT);
glLoadIdentity();
glOrtho (0,10,0,10,-1,1);
glColor3f (0,0,0);
outtext (1,3,0,"L",GLUT_BITMAP_TIMES_ROMAN_24);

glFlush();

void fidisplay () {
glClearColor (.6,.1,0,0);
glClear (GL_COLOR_BUFFER_BIT);
glloadIdentity();
glOrtho (0,10,0,10,-1,1);
glColor3f (0,0,0);
outtext (1,3,0,"fi",GLUT_BITMAP_TIMES_ROMAN_24);

glFlush();

22

void fcdisplay () {
glClearColor (.6,.1,0,0);
glClear (GL_COLOR_BUFFER_BIT);
glloadIdentity();
glOrtho (0,10,0,10,-1,1);
glColor3f (0,0,0);
outtext (1,3,0,"fc",GLUT_BITMAP_TIMES_ROMAN_24);

glFlush();

void Pdisplay () {
glClearColor (.6,.1,0,0);
glClear (GL_COLOR_BUFFER_BIT);
glloadIdentity();
glOrtho (0,10,0,10,-1,1);
glColor3f (0,0,0);
outtext (1,3,0,"P",GLUT_BITMAP_TIMES_ROMAN_24);

glFlush();

23

void nedisplay () {
glClearColor (.6,.1,0,0);
glClear (GL_COLOR_BUFFER_BIT);
glloadIdentity();
glOrtho (0,10,0,10,-1,1);
glColor3f (0,0,0);
outtext (1,3,0,"ne",GLUT_BITMAP_TIMES_ROMAN_24);

glFlush();

void nemouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) { //if pressed
cout<<"Enter a new value for ne, the number of earthlike planets per star.'<<end
cout<<"The old value is "<<ne<<endl;

cout<<"This parameter is not well known; however, if the solar system is represe

cin>>ne;

glutPostWindowRedisplay (mainwindow) ; //redraw main window
cout<<'"ne changed to '"<<ne<<endl; //inform user of change
glFlush(); //force drawing

24

void Rmouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) {
cout<<"Enter a new value for R, the number of stars formed per year.'"<<endl;
cout<<"The old value is "<<R<<endl;
cout<<"This parameter is believed to be between 1 and 20"<<endl;
cin>>R;
cout<<"R changed to '"<<R<<endl;
glutPostWindowRedisplay(mainwindow) ;

glFlush();

void fcmouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) {
cout<<"Enter a new value for fc, the fraction of intelligent beings that communi
cout<<"The old value is "<<fc<<endl;
cout<<"This parameter is largely unknown. Some guess it is between .1 and .2, s
cin>>fc;

cout<<"fc changed to "<<fc<<endl; //inform user of change

25

glutPostWindowRedisplay (mainwindow) ;

glFlush();

void flmouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) {
cout<<"Enter a new value for fl, the fraction of earthlike planets on which life
cout<<"The old value is "<<fl<<endl;
cout<<"This parameter is assumed to be close to 1, given how quickly life evolve
cin>>f1;

cout<<"fl changed to "<<fl<<endl; //inform user of change

glutPostWindowRedisplay (mainwindow) ;

glFlush();

void fimouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) {

cout<<"Enter a new value for fi, the fraction of life-bearing planets which deve

26

cout<<"The old value is "<<fi<<endl;
cout<<"This parameter is believed to be close to 1, since intelligence has great
cin>>fi;

cout<<"fi changed to "<<fi<<endl; //inform user of change

glutPostWindowRedisplay (mainwindow) ;

glFlush();

void Pmouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) {

cout<<"The current civilization density is "<<P<<endl;

void Lmouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) {
cout<<"Enter a new value for L, the length of time (in years) a communicating ci
cout<<"The old value is "<<L<<endl;

cout<<"This parameter is guessed to be between 1,000 and 100,000,000"<<endl;

27

cin>>L;

cout<<"L changed to "<<L<<endl; //inform user of change

glutPostWindowRedisplay (mainwindow) ;

glFlush();

void fpmouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN) {
cout<<"Enter a new value for fp, the fraction of stars with planets.'<<endl;
cout<<"The old value is "<<fp<<endl;
cout<<"This parameter is believed to be between .2 and .5"<<endl;
cin>>fp;

cout<<"fp changed to "<<fp<<endl; //inform user of change

glutPostWindowRedisplay (mainwindow) ;

glFlush();

28

void initialize () {
height = width = 500; //set size
glutInitDiSplayMode(GLUT_DEPTH|GLUT_SINGLE|GLUT_RGB); //Single buffered mode

glutInitWindowSize (width, height);

mainwindow = glutCreateWindow("SETI Visualizations"); //create main window
glutDisplayFunc(display); //function for main drawing

glEnable (GL_RGB) ; //RGB mode

glEnable (GL_TEXTURE_2D); //textures on

glEnable (GL_DEPTH_TEST) ; //

glDepthFunc (GL_LEQUAL) ; // more texture stuff

glEnable (GL_BLEND) ; //

glBlendFunc (GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); //
loadtextures() ; //load texture from milky.tga

glEnable (GL_RGB) ;

glClearColor(.3,.3,.6,0);
glMatrixMode (GL_PROJECTION); //create view
glloadIdentity();

glOrtho(-1,1,-1,1,-1,1);

cwidth= 200; cheight = 200; //control window size

29

glutInitWindowSize (cwidth, cheight); //control windoe
controlwindow = glutCreateWindow("Controls");
glutDisplayFunc(controldisplay) ; //drawing function for controls
glClearColor (1,1,1,1);

glClear (GL_COLOR_BUFFER_BIT) ; //set background

glMatrixMode (GL_PROJECTION) ;

glLoadIdentity();

glOrtho(-1,1,-1,1,-1,1);

//create buttons

Rbutton = glutCreateSubWindow(controlwindow, 10, 10, 22, 40);
glutDisplayFunc (Rdisplay); //display function for buttons

glutMouseFunc (Rmouse) ; //function for mouse click

fpbutton = glutCreateSubWindow(controlwindow, 50, 10, 30, 40);
glutDisplayFunc (fpdisplay);

glutMouseFunc (fpmouse) ;

nebutton = glutCreateSubWindow(controlwindow, 90, 10, 30, 40);
glutDisplayFunc (nedisplay);

glutMouseFunc(nemouse);

glutCreateSubWindow(controlwindow, 130, 10, 20, 40);

30

glutDisplayFunc(fldisplay);

glutMouseFunc (flmouse) ;

glutCreateSubWindow(controlwindow, 160, 10, 20, 40);
glutDisplayFunc(fidisplay) ;

glutMouseFunc (fimouse) ;

glutCreateSubWindow(controlwindow, 10, 60, 30, 40);
glutDisplayFunc(fcdisplay);

glutMouseFunc (fcmouse) ;

glutCreateSubWindow(controlwindow, 50, 60, 30, 40);
glutDisplayFunc(Ldisplay) ;

glutMouseFunc (Lmouse) ;

glutCreateSubWindow(controlwindow, 90, 60, 30, 40);
glutDisplayFunc(Pdisplay) ;

glutMouseFunc (Pmouse) ;

void outtext (double x, double y, double z, char *string, void *font) {

glRasterPos3f(x,y,z); //locate position for output

31

int len = strlen (string); //find length of output
for (int i = 0; i < len; i++) {
glutBitmapCharacter (font,string[i]); //output by chars

3

void display () {

glClear (GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT); //clear

glBindTexture (GL_TEXTURE_2D, map); //use texture
glColor3f (1.0,1.0,1.0);

glBegin (GL_QUADS) ; //square, background
glTexCoord2f (0,0); //point on texture
glVertex3f (-1,-1,.1); //point on screen
glTexCoord2f (0,1);

glVertex3f (-1,1,.1);

glTexCoord2f (1,1);

glVertex3f (1,1,.1);

glTexCoord2f (1,0);

glVertex3f (1,-1,.1);

glEnd () ; //done with quads

32

glColor3£(1.0,1.,1.0); //set draw color
glBegin(GL_POINTS) ; //begin drawing points

glColor3£(1.0,0,0); //set draw color

double x,y, xstep, ystep, points;

xstep = ystep = .005; //dist between points
points = 4/ (xstep * ystep); //number of possible points on screen
P = Rxfp*ne*flxfi*fc*xL/points; //current point density

if (P >= 1) cout<<"Warning: maximum saturation reached'<<endl;
for (x = -1; x <1; x+= xstep) //move across screen
for (y = -1; y < 1; y += ystep)
if (P > (double(rand())/double(RAND_MAX)))
glVertex3f(x,y,0.2); //draw point
glEnd Q) ; //done with points

glFlush(); //force drawing

int main (int argc, char ** argv) {

srand (unsigned (time (NULL))) ; //seed random numbers
drakeinit(); //initialize Drake factors
glutInit (&argc, argv); //initialize graphics

initialize(); //more graphics initialization

33

glutMainLoop() ;

return O;

}

B explorer.cpp

// SETI Visualizations

// by Immanuel Buder

#include

#include

#include

#include

#include

<stdlib.h>
<iostream.h>
<GL/glut.h>
"tgaload.cpp"

<time.h>

#define occupied 1;

#define vacant O;

#define spawn 2;

//hand control over to OpenGL

//routine for loading texture from targa

//codes for data

int mainwindow,controlwindow,Twindow; //window id numbers

GLint height, width; //window size

GLuint map;

GLint cheight, cwidth;

//texture, galaxy map

//controol window size

34

long long count; // number of run stages

int mode; //alien type
int pos[501] [601]; //what at each point
void display (); //main drawing function (prototype)

void outtext (double x, double y, double z, char *string, void *font); //not used

void movel (int x, int y) { //explorint function for type 1 alien
int dir = rand() % 4; //random mvmt

switch (dir) {

case 0:
if (pos[x-1]1lyl == 0) { //if no one there
pos [x-1]1[y] =pos[x][y] = spawn; //go
break;
3 //if can’t go, move to next
case 1:

if (pos[x+1][y] == 0) {
pos[x+1] [y] = pos[x][y] = spawn;

break;

case 2:

35

if (pos[x][y-11 == 0) {
pos[x] [y-1]=pos[x] [y] = 2;
break;
}
case 3:
if (pos[x][y+1] == 0) {
pos[x] [y+1] = pos[x][y]l = spawn;

break;

void move2(int x, int y) {
int dir = rand() % 4;
switch (dir) {
case 0:
if (pos[x-11[y]l == 0) {
pos[x-1] [yl =pos[x][y] = spawn;
}
break; //stop even if can’t go
case 1:

if (pos[x+1]1[y] == 0) {

36

pos[x+1] [yl = pos[x][yl = spawn;
}
break;
case 2:
if (pos[x][y-11 == 0) {

pos[x] [y-1]1=pos[x] [y] = 2;

break;

case 3:
if (pos[x][y+1] == 0) {

pos[x] [y+1] = pos[x][y] = spawn;

break;

void move3(int x, int y) {
switch (0) { //always 0 direction first
case 0:

if (pos[x-11[y] == 0) {

37

pos[x-1]1[y] =pos[x][y] = spawn;
break;
} //next direction if this one fails
case 1:
if (pos[x+1][y]l == 0) {
pos[x+1] [yl = pos[x][ly] = spawn;
break;
}
case 2:
if (pos[x]ly-1] == 0) {
pos [x] [y-11=pos[x] [y] = 2;
break;
}
case 3:
if (pos[x][y+1] == 0) {
pos[x][y+1] = pos[x][y]l = spawn;

break;

void move4 (int x, int y) {

38

int dir = rand() % 4;
switch (dir) {
case 0:
if (pos[x-11[y]l == 0) {
/* coin toss to stop */ if (rand() % 2) pos[x-1]1[y] =pos([x] [yl = spawn;
break;
} //next direction if can’t go
case 1:
if (pos[x+1][y]l == 0) {
if (rand() % 2) pos[x+1][y]l = pos[x][y] = spawn;
break;
}
case 2:
if (pos[x][y-11 == 0) {
if (rand() %2) pos[x][y-1l=pos[x][ly]l = 2;
break;
}
case 3:
if (pos[x][y+1] == 0) {
if (rand() % 2) pos[x][y+1] = pos[x][y] = spawn;

break;

39

}
}
void loadtextures () { //load texture
glPixelStorei (GL_UNPACK_ALIGNMENT,1);
glHint (GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST) ;
map = tgalLoadAndBind ("milky.tga",TGA_DEFAULT);
}

void mouse (int button, int state, int x, int y) {
if (state == GLUT_DOWN && button == 2) { //if right click
cout<<count<<" ticks"<<endl; // say time before exit

exit (0);

/%
void Tdisplay () { //0ld control routine
glClearColor (.6,.1,0,0); //no longer used

glClear (GL_COLOR_BUFFER_BIT) ;

40

glLoadIdentity();

glOrtho(0,10,0,10, -1,1);
glColor3£(1.0,1.0,1.0);
outtext(1,3,0,"T",GLUT_BITMAP_TIMES_ROMAN_24);

glFlush();

void Tmouse(int button, int state, int x, int y) {
if (state == GLUT_DOWN) {

cout<<"The current time is '"<<count<<endl;

void controldisplay () {

glClear (GL_COLOR_BUFFER_BIT) ;

*/

void initialize () {
height = width = 500; //set size
glutInitDiSplayMode(GLUT_DEPTH|GLUT_DOUBLE|GLUT_RGB);

glutInitWindowSize(width, height);

41

//0penGl mode

mainwindow = glutCreateWindow("SETI Visualizations"); //create main window

lutDisplayFunc (display) ; //set display function

g play play y
glutMouseFunc (mouse) ; //set mouse function
glEnable (GL_RGB) ; //0OpenGL options

glEnable (GL_TEXTURE_2D);

glEnable (GL_DEPTH_TEST) ;

glDepthFunc (GL_LEQUAL) ;

glEnable (GL_BLEND) ;

glBlendFunc (GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA) ;
loadtextures();

glEnable (GL_RGB) ;

glClearColor(.3,.3,.6,0); //background color
glMatrixMode (GL_PROJECTION); //create view
glLoadIdentity(); //

gl0rtho(1,500,1,500,-1,1); //drawspace size

// cwidth= 200; cheight = 200; //no longer used

glutInitDisplayMode (GLUT_DEPTH|GLUT_SINGLE|GLUT_RGB);

glutInitWindowSize (cwidth, cheight); //control windoe

/* controlwindow = glutCreateWindow("Controls");

42

glutDisplayFunc(controldisplay) ; //no longer used
glClearColor (1,1,1,1);

glClear (GL_COLOR_BUFFER_BIT) ;

glMatrixMode (GL_PROJECTION) ;

glLoadIdentity();

glOrtho(-1,1,-1,1,-1,1);

Twindow = glutCreateSubWindow(controlwindow, 10, 10, 40, 40);
glutDisplayFunc(Tdisplay) ;

glutMouseFunc (Tmouse) ; */

void outtext (double x, double y, double z, char *string, void *font) {
glRasterPos3f(x,y,z); //locate position for output
int len = strlen (string); //find length of output
for (int i = 0; i < len; i++) {
glutBitmapCharacter (font,string[i]); //output by chars

}

void display () {

glClear (GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT); //clear

43

glBindTexture (GL_TEXTURE_2D, map); //use texture

glColor3f (1.0,1.0,1.0); //draw color -- doesn’t work
glBegin (GL_QUADS) ; //square, background

glTexCoord2f (0,0); //coordinate in texture file
glVertex3f (1,1,.1); //coordinate on screen

glTexCoord2f (0,1);
glVertex3f (1,500,.1);
glTexCoord2f (1,1);
glVertex3f (500,500, .1);
glTexCoord2f (1,0);

glVertex3f (500,1,.1);

glEnd () ; //done with quads

glColor3f(1.0,1.,1.0); //set draw color -- does not work

glBegin (GL_POINTS) ; //draw points

glColor3£(1.0,0,0); //set draw color -- does not work

int x,y; //

for (x = 1; x <= 500; x++) //move across screen
for (y = 1; y <= 500; y++) //

if (pos[x]l[lyl == 1)

44

glVertex3f(x,y,.1); //plot aliens

for (x = 2; x<=499; x++)
for (y=2; y <= 499; y++)

if (pos[x]llyl == 1) {

if (mode == 1) movel(x,y); //do movement
if (mode == 2) move2(x,y);
if (mode == 3) move3(x,y);

if (mode == 4) moved(x,y);

}
for (x = 1; x <= 500; x++)
for (y = 1; y<=500; y++){

if (pos[x]lyl == 2) //update spawnms

45

pos[x] [yl = occupied;

for (long long j = 0; j < 5; j++); //waste time

glEnd Q) ; //done with points
glFlush(); //force drawing
count++; //count updates
glutSwapBuffers() ; //animate

// glutPostWindowRedisplay (Twindow) ;

int main (int argc, char *x argv) {
if (argec !'= 2) {

cout<<"FATAL ERROR. Incorrect number of arguments. You die.'"<<endl;

exit (0);
}
mode = strtol(argv[1],NULL,10); //read in mode
srand (unsigned (time (NULL))); //seed random

for (int x = 0; x <= 500; x++)

for (int y = 0; y <= 500; y++)

pos[x][y] = vacant; //clear galaxy
pos [(rand () %500)+1] [(rand () %500)+1] = occupied; //random start
count = 0; //initialize counter

46

glutInit(&argc, argv); //initialize graphics

initialize();
glutIdleFunc(display) ;
glutMainLoop() ;
cout<<count;

return O;

stratl.pov

camera {

location <-1,-2,10>

look_at <0,0,0>

light_source {

<-1,-2,11>

color rgbf<1,1,1>

sphere {

<0,0,0>,5

pigment {

//

//hand control to OpenGL

//where are you

//where are you looking

//where is light

//what color light

//where is sphere, size

47

image_map {
gif "globe.gif" //map texture
map_type 1 //how texture is applied to surface

interpolate 0

}
}
}
cone { <0,0,7>.25, //cone base and radius
<0,0,5>,0 //cone point

pigment {color rgbf <1,0,0,.5>} //color

cone { <-1,-2,6>, .25,
<-1,-1,4>,0

pigment {color rgbf<1,0,0,.5>}

D strat2.pov

camera {

location <-1,-2,10> //where are you

48

look_at <0,0,0> //where are you looking

light_source {

<-1,-2,11> //where is light
color rgbf<i,1,1> //what color light
}
sphere {
<0,0,0>,5 //sphere location + size
pigment {
image_map {
gif "globe.gif" //map texture to sphere
map_type 1 //how texture is applied
interpolate 0
}
}
}
cone { <.5,.5,5.5>.75, //cone base and radius
<0,0,5>,0 //cone point
pigment {color rgbf <0,1,1,.5>} //color

49

cone { <-1,-2,6>, .5,
<-1,-1,4>,0

pigment {color

cone { <1.5,0.5,5.5>,
<1,0,5>,0

pigment {color

cone { <.5,-3,5>, .75,
<0,-2,4.5>,0

pigment {color

E home.pov

camera {
location <-3,-4,12>

look_at <0,0,0>

rgbf<0,1,1,.5>}

.75,

rgbf<0,1,1,.5>}

rgbf<0,1,1, .55}

//where are you

//where are you looking

20

light_source {
<-1,-2,11>

color rgbf<i,1,1>

//where is light

//what color light

//where is sphere, size

//map texture

//how texture is applied to surface

rotate <0, clock*x20/16,0> //spin with time

}
sphere {
<0,0,0>,5
pigment {
image_map {
gif "globe.gif"
map_type 1
interpolate 0
}
}
}

cone { <0,0,7>.5,

<0,0,5>,0

//cone base and radius

//cone point

pigment {color rgbf <1,1,0,.3>} //color

ol

rotate <0, clockx*20/16,0>

sphere { <0,0,7>, .125
pigment {color rgbf <0,0,1,1-sin(clock * 3.1415926535/16)>} //change brightness
rotate<0,8%20/16,0>

3

F breakup.cpp

// SETI Visualizations

// by Immanuel Buder

#include <stdlib.h>
#include <iostream.h>

#include <GL/glut.h>

double f,t;
int mainwindow; //window id numbers

GLint height, width; //window size

void display (); //main drawing function (prototype)

52

void outtext (double x, double y, double z, char *string, void *font); //not used

void initialize () {
height = width = 500; //set size
glutInitDisplayMode (GLUT_RGB); //OpenGl mode

glutInitWindowSize (width, height);

mainwindow = glutCreateWindow("SETI Visualizations"); //create main window
glutDisplayFunc(display) ; //set display function
glClearColor(.3,.3,.6,0); //background color

glMatrixMode (GL_PROJECTION) ; //create view
glLoadIdentity(); //

gl0rtho(0,500,0,2500,-1,1); //drawspace size

// cwidth= 200; cheight = 200; //no longer used

glutInitDisplayMode (GLUT_DEPTH|GLUT_SINGLE|GLUT_RGB) ;

/* controlwindow = glutCreateWindow("Controls");
glutDisplayFunc(controldisplay) ; //no longer used
glClearColor (1,1,1,1);
glClear (GL_COLOR_BUFFER_BIT) ;

glMatrixMode (GL_PROJECTION) ;

93

gllLoadIdentity();

glOrtho(-1,1,-1,1,-1,1);

Twindow = glutCreateSubWindow(controlwindow, 10, 10, 40, 40);
glutDisplayFunc(Tdisplay) ;

glutMouseFunc (Tmouse) ; */

void outtext (double x, double y, double z, char *string, void *font) {
glRasterPos3f(x,y,z); //locate position for output
int len = strlen (string); //find length of output
for (int i = 0; i < len; i++) {
glutBitmapCharacter (font,string[i]); //output by chars

}

void display O {
glClear (GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT); //clear
glColor3f(.8,0,.6); //color
glBegin(GL_QUADS) ; //draw background square
glVertex3£(0,0,0);

glVertex3f (0,2500,0);

54

glVertex3f(500,2500,0) ;

glVertex3f(500,0,0);

glColor3f(.8,.8,0);

glVertex3£(0,0,0); //draw foreground rectangle
glVertex3f(0,f,0);

glVertex3f (t,f,0);

glVertex3f(t,0,0);

glEnd () ; //done drawing quads

glColor3f(1,1,1);
outtext(200,50,0.1,"Time" ,GLUT_BITMAP_TIMES_ROMAN_24); //label axes
outtext (10,1250, .1, "Frequency",GLUT_BITMAP_TIMES_ROMAN_24);
glFlush(); //force drawing
cout<<"The current frequency width is "<<f<<" kHz'"<<endl
<<"The current time width is "<<t<<" s'"<<endl
<<"The current data size is "<<2xf*xt<<" Kb'"<<endl;
cout<<"Enter new (f,t) in (kHz,s)'"<<endl;
cin>>f>>t;
glutPostRedisplay() ; //redraw after input

// glutPostWindowRedisplay(Twindow) ;

95

int main (int argc, char ** argv) {

f = 10; //initialize values = SETI@home current
t=107;

initialize(); //0penGL stuff
glutMainLoop() ; //hand control to OpenGL
return O;

26

