A Study of Balanced Search Trees:

Brainstorming a New Balanced Search Tree

Anthony Kim, 2005
Computer Systems Techlab

This project investigates four different balanced search trees for their advantages and
disadvantages, thus ultimately their efficiency. Runtime and memory space management are
two main aspects under the study. Statistical analysis is provided to distinguish subtle
difference if there is any. A new balanced search tree is suggested and compared with the
three balanced search trees. Balanced search trees are implemented in C++ extensively using
ointers and structs.

The order of data input is important to the structure of a binary search tree (or general

search tree). In a optimal binary tree, the data are input so that insertion occurs just right Evaluating binary search trees can be done in various ways because they can
which makes the tree “balanced,” the size of left subtree is approximately equal to the size serve number of purposes. For this project, a binary search tree was developed
of right subtree at each node in the tree. In an optimal binary tree, the insertion, deletion, to take some advantage of random nature of statistics with some assumption.
and search function occur in O(log N) with N as the number of data in the tree. This Therefore it is reasonable to do evaluation on this basis. With this overall
follows from that whenever data comparison occurs and subsequent traversal (to the left or purpose, several behaviors of balanced search trees will be examined. Those
to the right) the number of possible subset divides in half at each turn. However that's only are:

when the input is nicely ordered and the search tree is balanced. It's also possible that the (1) Time it takes to process a data set

data are input so that only right nodes are added. (Root -> right -> right -> right ...) It's (2) Average time retrieval of data

obvious that the search tree now looks like just a linear array. And it is. And this give O(N) (3) Height of the binary tree

to do insertion, deletion and search operation. This is not efficient. Thus balanced search (4) Average retrieval depth of data

trees are developed to perform its functions efficiently regardless of data input.

¥include<fstream. hs
¥include<icstrean. h>

$include=stdlib,. h> Median_weight_mix tree

struct NODE
{ Median-weight-mix tree probably serves no theoretical purpose because it’s not perfect. It has no well

int key, freq;//key walue, frequency counter

double leftw, rightw;//weight walue calculated bhased on RB-8 weighting 1 1 1 1 1 1
e e e e Ll e defined behavior that obeys a set of properties. Rather it serves practical purpose mostly likely in

o RE Slete S ek statist.ics. Median-weight-mix tree is based on followipg assumption in dat.a p}rocessing:
ot DEBUG=; (1) leep lower boupd and upper bound of to.tal dat'a input, random behavior is assumed.
int N; ’ (2) Multiple “bells” 1s assumed to be present in the interval.

double petartl, rendl, vEotal: Algorithm:

long D=0, array[2000000];

: : : e ”
e s e aeen eedin Each node will have a key (data number), an interval (with lower and upper bounds of its “assigned

void Tﬁféﬁﬁggggge{%ggEE;gggé; ; interval) and weights of left subtree and right subtree. The weights of each subtree are calculated is based
Jmse s i “Efﬁ‘?m’éﬁﬁdfaoéz’j mewiieyl; on constants R and S. Coqstant R represents the importance of focusing fr'equency heavy data points.

e e) Constant S represents the importance of focusing frequency weak data points. So the ratio R/S .

void postorder(NODE *current); consequently represents the relative importance of frequency heavy vs. frequency weak data points. Then
o Eiifiﬁé“i’?iii“ﬁ?“’ At Rasiekl; tree will be balanced to adjust to a favorable R/S ratio at each node by means of rotating, left rotating and

HODE *greate nodel{int newkewv);

voild print{vold);

vold find DINODE *current, int d);

int check{NODE *current, long walue];

void find D{NODE *ecurrent, int d};

fint checki{NODE *current, long walue, int dj:
i

right rotating.

int mainf(

IYVIVI

Weight |
235 235
2 568 39 5.08
3 MAA 485 544
4IM/A | 7.01] 8.68
5 M/A | 822 11.82
B M/A | 9.24 13.72
7IM/A | 10.38) 1467
8 M/A 10.48 14.52
9IM/A | 10,47 15.16
10 N/A 1167 1853
T1INAA | 11.59] 15.68
12 WA | 11865 16.43
13[N/A | 11.67 16.57
T4/N/A | 11.54] 17.77
r 49.03 4.87 8.51
2 18.56 4.4 455
13 [NA 0 0N/
r4| 2368.98 27

Bvrerage Retrieval Depth

This independent study of four balanced binary search trees yields some insight into the
data structure. First, it has experimentally verified that balanced search trees'
logarithmic characteristics. The logarithmic characteristics include the height of the tree
and the average retrieval depth. Although, no reliable experimental data was produced,
but the average retrieval time and the total run time are also expected to behave
logarithmically.

Depth of tree (numi.
[as}
Heighst (mamber of nodes)
cwoD rEHNHE&RS

1} 2000 4000 BO00 aooo 10000 12000

R
(]

+ T T T +
2000 4000 G000 §000 10000 12000
Data Size (number of data points

Data dze (number)

[#RetBlackTres = HeightTree WisightTres -~ WeighthixTree |

|¢RedElIackTree sHeightTree WeightTree - Weighth ixTree

It is interesting to note that each tree shows lograithmically increasing curve as the
data size increased. This logarithmic trendline was expected because the height of a
perfect binary search should be Ig(n). This characteristic was proved rigorously
using induction for red-black tree. Height-balanced tree and weight-balanced tree
should yield logarithmic curve because they are self-balancing trees after all. Self-
balancing allows trees to obtain the optimal structure with "filled" branches and thus
all nodes closer to the root. Median-weight-mix tree also shows logarithmic curve.

Another observation is that height-balanced tree performs better than weight-balanced
tree in almost all aspects. | have an explanation for the unexpected result. I think the
answer lies in the recursive functions of the two search trees. Even though both are
structured in the same way, recursive balancing function of weight-balanced tree is
cumulative. This is because weight of each node is the sum of the weight of left subtree,
the weight of right subtree plus one. On the other hand, the recursive balancing function
of height-balanced tree is somewhat conservative. The height at each node is the greater

Though its special R/S ratio makes it deviates from its mother the weight balanced of heights of left subtree and right subtree plus one.

tree. It seems to stabilize the original weight-balanced tree, interestingly. This is

probably caused by R/S ratio. I think R/S ratio skews the data points little bit so that The median-weight-mix tree showed an interesting performance. Though with

in a way it behaves like interval balanced, or height balanced. As result, the specialized weighting system, the tree nevertheless shows logarithmic characteristics
logarithmic curve of median-weight-mix tree lies between the logarithmic curve of like red-black tree, height-balanced tree and weight-balanced tree. This experimentally
Weight-balanced tree and the curve of height-balanced tree. The red black tree should proves that median-weight_mix tree 1s one of many of balanced search trees. More
give some insight into this analysis, but unfortunately, the red black tree fails to run interestingly, the median-weight-mix tree's logarithmic characteristics lies between

on large test cases due to a seemingly minor bug in the program. height-balanced tree's and weight-balanced tree's.

As mentioned earlier, average retrieval depth is proportional to average retrieval time,
assuming constant time between each recursive steps. Fortunately, the average
retrieval depth data is more readable than the average retrieval time. It's interesting

More studies can be done on balanced search trees. One suggestion is to expand the
study to other balanced search trees such as B-tree etc. Also most test cases of various

that the average retrieval depth data shows logarithmic regression line. This is not type can be generated and tested to give more accurate result. One thing I wanted to do
obvious, but probably the fact that height of search tree follows logarithmic curve but did not have time to is varying R/S ratio. Varying R/S ratio changes median-weight-
somehow forces the average retrieval depth to behave similarly. The average retrieval mix tree and ultimately its performance. Varying R/S ratio is probably linked to

depth data also supports the observation made based on the height data. The median- logarithmic characteristics'of t}}e balanged search tree. It 1s possib-le that varying R/S
weight-mix tree's curve lies between height-balanced tree's and weight-balanced ratio will change the logarithmic curve in the range defined by height-balanced tree's

tree's. curve and weight-balanced tree's curve.

