
Kernel Debugging User-Space API Library
(KDUAL)

John Livingston, TJHSST Computer Systems Research 2005

http://www.kernel.org/

Background

The Linux kernel is an extremely complex program spanning more than 2 million lines. It must be held to the most
stringent standards of performance, as any malfunction, or worse, security flaw, could be potentially fatal for a critical
application. However, because of the nature of the kernel and its close interaction with hardware, it's extremely difficult to
debug kernel code. The goal of this project is to create a C library that provides the kernel API, but operates in ordinary
user space, without actual interaction with the underlying system. Kernel code currently being tested can then be compiled
against this library for testing without the risks and confusion of testing it on a live system.

Abstract

The purpose of this project is to create an implementation of much of the kernel API that functions in user space,
the normal environment that processes run in. The issue with testing kernel code is that the live kernel runs in kernel
space, a separate area that deals with hardware interaction and management of all the other processes. Kernel space
debuggers are unreliable and very limited in scope; a kernel failure can hardly dump useful error information because
there's no operating system left to write that information to disk.

Kernel development is quite likely the most important active project in the Linux community. Any aids to the
development process would be appreciated by the entire kernel development team, allowing them to do their work
faster and pass changes along to the end user quicker. This program will make a direct contribution to kernel
developers, but an indirect contribution to every future user of Linux.Process

The development of the core library consisted of a great deal of research into the pure software components of the
kernel itself. Most development was done using a vanilla 2.6.9 kernel tree, provided by kernel.org, with some additions
from 2.6.10. Once all hardware interactions were stripped from the kernel, the necessary sources and headers were
recreated within the library. Additional work was done to improve the speed of the library's “hardware” mathematics and
data structure manipulation, in order to minimize the inherent time delay caused by simulating on-CPU calcuation with a
software program.

A snippet of the KDUAL makefile.

Conclusion

The development of this library allows greater ease of debugging for some kernel modules. These
modules by necessity must not have any hardware interactions, but beyond that there is no theoretical
limit to what the library can be used to test. In its present form the library is only effective on very
simplistic modules, but can be expanded to include far more complex interactions.

The natural outgrowth of this project would be its continued development to support different
types of kernel modules, possibly by means of a future developer selecting a module they wish to
have supported, and add the necessary code to the library to support that module. Using the
traditional open source method, perhaps by placing the library on a site such as Sourceforge, support
could expand rapidly.

