
Kernel Debugging User-Space API Libarary
(KDUAL)

John Livingston
TJHSST Computer Systems Research 2005

Abstract

● Creation of a library to emulate the Linux kernel
for software development

● Current development cycle of kernel modules is
inefficient; running kernels are hard to debug

● Extensive research into the structure of the Linux
kernel and its development

● Programs can now be compiled against the library

Background

● Debugging kernel modules is especially tedious
because a problem can often result in a total
system crash

● Saving crash information is difficult when your
operating system isn't running anymore

● Improving the module development process will
be a great benefit to kernel developers

Background

● The scope of the project is to create a debugging
library that can simulate sections of a running
kernel

● Cannot simulate hardware interactions

● Library will allow “sandbox” testing of module
code without risk of a system crash

KDUAL

● Emulates some functions of the Linux kernel

● High-speed atomic mathematics

● Locking

● Virtual Filesystem Switch (VFS)

● Extensible structure

KDUAL Examples

Atomic Addition:

static __inline__ void kc_atomic_add
(int i, atomic_t *v) {
__asm__ __volatile__(

LOCK “addl %1,%0”
:”=m” (v->counter)
:”ir” (i), “m” (v->counter));

 }

KDUAL Examples

Making coffee:

ifneq ($(strip $(filter coffee, $(MAKECMDGOALS))),)
override COFFEE_MSG_NUM=$(shell expr “$$RANDOM” '%' '4')
coffee:
ifeq ($(COFFEE_MSG_NUM),0)

@echo EBORK: Coffee maker is broken!
else
ifeq ($(COFFEE_MSG_NUM),1)

@echo ENOCFE: Out of coffee!
else
ifeq ($(COFFEE_MSG_NUM),2)

@echo ENOMY: Insufficient payment!
else

@echo ETOMCH: Cup overflow error!
endif
endif
endif
endif

Conclusion

● Design and base implementation successful

● Broader functionality needed

