
An Investigation into Implementations of
DNA Sequence Pattern Matching

Algorithms

Peden Nichols

Background
There is an immense amount of

genetic data generated by government efforts
such as the human genome project and by
organization efforts such as The Institute for
Genomic Research (TIGR). The task of
extracting useful information from this data
requires such processing power that it
overwhelms current computational
resources. However, there exist large
amounts of unused processing power in
schools and labs across the country; most
computers are never being used all of the
time, and most of the time that computers are
being used their processors are nowhere near
100% load. Harnessing some of this unused
power is a useful problem not just for the
specific application in Bioinformatics of
DNA sequence pattern matching, but for
many computationally intensive problems
which could be solved more accurately and
faster with increased resources.

Abstract
The BLAST (Basic Local Alignment Search Tool)

algorithm of genetic comparison is the main tool used in the
Bioinformatics community for interpreting genetic data. Existing
implementations of this algorithm (in the form of programs or web
interfaces) are widely available and free. Therefore, the most
significant limiting factor in BLAST implementations is not
accessibility but computing power. My project deals with possible
methods of alleviating this limiting factor by harnessing computer
resources which go unused in long periods of idle time. The main
methods used are grid computing, dynamic load balancing, and
backgrounding.

Development
The first step in harnessing unused processor

power is to clearly establish and document the existence
and magnitude of that unused power. Accomplishing this
task requires that we establish some metrics for describing
computer load and develop a way to keep a record of
those metrics over time. Perl is an ideal language with
which to write a program which could perform this task
because of its text manipulation capabilities and high
speed. The program “cpuload” uses the Linux “uptime”
command every second, parses the output, and writes the
results to a file which is then plotted using gnuplot. The
graph shows the results over one execution of the BLAST
algorithm comparing two strains of e-coli bacteria.

The use of grid computing to optimize BLAST implementations is not
an original idea; a program called mpiblast has already been written
and made available to the public. However, implementing mpiblast in
any given environment is not a trivial task. For example, our systems
lab, although it has mpi installed on several computers, has not
maintained a list of which computers are available to run parallel
programs. My next task was to compile this list using essentially trial
and error and running a test mpi program, mpihello.c. The original,
obsolete mpihosts file and the updated file are shown below.

Initial (obsolete) machines list Updated machines list

