A Study of Creating Computational Models of
Traffic

Madeleine E. R. Pitsch
June 9, 2005

Abstract

The goal of my project is to make an accurate simulation of traffic
in a multi-lane intersection world that will be easily mutible. I will
complete this goal by creating a logical organizational structure that
will easily lend itself to creating situations in which to study traffic.
My main concerns will be in the studies on the effects of construction
work and accidents on traffic low. I will then proceed to advance the
accuracy of the traffic simulation as much as time will allow so the
study will prove to be useful in its own right.

1 Introduction

Traffic simulation is a fairly complex computational model becuase of the
many interactions between the agents and the world plus the duality of the
agents themselves. There has been much to study in approaching and un-
derstanding traffic simulations and why they are useful tools.My goal when
researching before the creation of my project was to find the main consid-
ereations when creating a traffic simulation. I then studied actual projects to
find which one type would prove the most useful to elaborate on. Traffic has
become a major problem in the Washington metropolitan area and in the
United States in general. In 2001, Paul Krugman, a writer for the New York
Times, stated that in Atlanta during 1999, for each individual that decided to
drive during rush hour, the resulting cost to the other drivers was 14 dollars
per day, or 3,500 dollars per year. In the 1996 census, Atlanta was rated as
the fourth worst traffic congestion area in the United States, while Washing-
ton D.C. area was rated second, later dropping to third in 2001. Drivers in
Washington D.C. lose an average of 36 hours in traffic per year. The Wash-
ington D.C. area is ranked fourth in the amount of extra time needed for a

trip during rush hour and fifth in the average amount of time each person
wastes in traffic jams. Island & T St. Bridges over North Capitol and the
23rd St. Bridge over Virginia Avenue . Construction currently taking place
on the Theodore Roosevelt Memorial Bridge has already caused major traffic
problems in the city. Work on the Springfield Interchange has caused traffic
difficulties in Virginia and is predicted not to be finished until 2010 or later.
The government is now debating whether to shut down multiple traffic lanes
even during rush hour so construction can be completed in months instead
of years.

2 Background Information and Theory

2.1 Uses

Traffic Simulations are used in a variety of ways. One of the most prominent
and original uses was to use traffic simulations to evaluate alternate treat-
ments. Since engineers were in control of all the variables, they could evaluate
such things as signal control strategies, and speed limit management. Traffic
simulations are often used to test new designs. Because roadwork is so ex-
pensive, traffic simulations can help quantify the improvement of traffic flow
with different geometric arrangements. Even more so, traffic simulations can
also be an element of the design process as well. Traffic simulations are also
used to test traffic center personal and can also be used to recreate a traffic
accident and then design a safer environment in response to that accident.

2.2 Why simulations

Simulations describe a non-static environment in a statistical or pictorial
way. They can be used whenever there is a system undergoing mathematical
changes over a long period of time or there is a need to view an animation
of the system to understand what is causing the final results. They are also
approached when the mathematical equation can not accurately factor in all
the agents of a system. Traffic simulations are used to support optimiza-
tion models, and new theories in management. They are an efficient way
to see understand calculated data particularly if the simulation creates an
animation output.

2.3 Classification

Most traffic simulations have a dependent variable of time meaning they
are dynamical systems. Discrete simulations show real-world examples by
having certain changes occur at a certain time. The two discrete models are:
discrete time and discrete event. Discrete event models run cycles after each
change in the system while discrete models merely run at time increments
were situations occur according to the time. Discrete event models are a
lot harder to create and model but are useful in specific cases. A traffic
simulation called NETFLO was a discrete event model that considered a
single facility. Discrete event models are often more efficient for models that
have lots of down time but since traffic simulation is a study of continuous
flow of traffic, discrete time models are more prevalent.

Simulations are also defined by there level of detail and/or fidelity to a
real life system. There are three levels: Macroscopic, Mesoscopic, and Micro-
scopic. Macroscopic systems are the least accurate and are usually use when
only a simple understanding of the interactions between the vehicles is nec-
essary. Mesoscopic are used in situations where a model with high accuracy
with the entities is needed but describes their interactions at a more simple
level. Microscopic is the most detailed which keeps a high level of detail
in both the entity and their reactions. For examples, a microscopic model
would have lane-changing or left turning while the other two levels might
not. Microscopic however only refers to the possibility of a more accurate
simulation. They may not be so accurate dependent on the complexity of
the system. They are also very hard to create and maintain. Lower-fidelity
models are much easier to create and maintain and could be complicated for
the purpose created. Often the designer must have a well-developed focus to
choose the correct level of fidelity for the project.

The last form of classification refers to the processes of the model. There
are two types: deterministic, and stochastic. Deterministic models are mod-
els where every decision made relies on previously gathered data from a real-
life situation. Stochastic models instead use random-number generators and
statistics to have the entities make decisions. While the deterministic model
should be more accurate, very often situations will arise where there is not
gathered data. Unless the system is very focused on one type, a deterministic
model would be inefficient.

2.4 Approach to simulations

A certain approach should be taken towards a building a traffic simulation.
The first step is to define the problem and the model objectives. A builder

must now what is the primary focus of his simulation so the appropriate
model choices can be made to make the most efficient model for that purpose.
The builder must now what data the simulation should output.

The next step is to then, using the previously found data, to define the
situation the model is evaluating. The builder must understand the major
components, and what are the major interactions of those components. He
must as well identify the information that needs to be acquired.

The third step is the most complicated and is where the actual modeling
occurs. The complexity of the model must be established to then identify
which of the three classifications (macroscopic, mesoscopic, microscopic) will
be used. Next is determine what will be the major functions of all of the
components of the models and how the data will flow through the compo-
nents. For that to be efficient, an appropriate hierarchy must be chosen as
well. The modeling language must be chosen and all the logic in the program
must be documented. The final point is the hardest which then the actual
coding of the program followed soon after by debugging.

After the model has been created, the model must then be tested with
input data and then followed up by acquizitionof output data. The model
must be validated and evaluated on pre-specified criteria relating to the ac-
tual purpose of the model.

2.5 Specified Functions

Part three of the development model refers mainly to the creation of the
model in particular the creation of the functions that interact with the dif-
ferent components. One of the most important is the car following function.
The function that determines how one car reacts to the car in front of it
is probably the most important function in a traffic simulation. The Car
has to decide whether to keep the speed, accelerate, or decelerate depending
on the what the car does in front of it. In the real world, the driver sees
how the car in the front proceeds and makes judgment calls dependent on
their own attitude. This is hard to program and also can be one of the most
messy methods to deal with. It is the primary method that requires outside
information of other cars and often is one of the definers for approaching
the hierarchy of the entire model. The most customary parameters for this
method are speeds of self and leader, separation distance, projected deceler-
ation/acceleration methods for self and leader, and the reaction time of the
follower.

Another important method if the model is stochastic is the random num-
ber generators. Because all random-generators are actually no random they
have to be truly referred to as pseudo-random number generators. For

4

stochastic model to work well, the pseudo-random number generators have
to be fairly random.

An often forgotten specified function when planning is the vehicle gen-
eration method. If any of the real-world data has to be found to make a
model, most of it would have to be required for this method. Particularly
the volume for a particular road has to be accurate or the entire model will
be fairly inaccurate. Other points have to be taken into account like if the
mean volume of cars should very over time (eg. Show traffic over a period of
time like an entire day with two rush hour periods).

2.6 Picking a language

Picking a language is a very important decision to make when considering a
simulation. There are two types of languages to consider: general purpose
languages, and simulation languages. Simulation languages are exactly what
there title implies: languages created entirely for the purpose of being used to
make simulations. They are often easier to use and can be very efficient. They
incorporate many features that compile statistics as well as other functions
common to modeling. General-purpose languages fit into two categories:
procedural or object oriented. Object-oriented languages support the concept
of defining an object and then can be put into a world and process data as well
as react with the environment. Although it creates better analysis, object-
oriented programming is much harder to program . Some of the factors that
should be considered when picking a language are the expected life of the
simulation model, the skills of the user community, budget, and assessment
of the developers skills.

2.7 Representative Model Component

In simulation, particularly object-oriented planning an important aspect is
defining the agent in which the world is created for. For traffic simulation, it
is important to realize that the agent has two parts: the driver and the car.
The car has fairly easy to quantify attributes such as size, acceleration limit,
deceleration limit, and maximum turn radius. These attributes are easy to
define and pose no problem. It is the human aspect of the agent that proves to
be difficult to model. The driver has an aggression factor(will take more risky
turns or be a defensive driver), response time to stimuli, and a destination
point. The destination can often be ignored in a simpler program but the
other two pose a problem. The simplest approach is to set the mode of people
in the center with average aggression and response time. The mass of the
people can form a standard bell curve with the fewest people being very risky

or cautious. The response time will have a much smaller range because of the
sensitivity of the data to a fairly long response time. This component has to
use its own attributes to accurately give logical responses to the environments
characteristics like roadway geometrics, intersection configurations, nearby
driver-vehicle entities, control devices, lane channelization, and confliction
vehicle movements. Some of these aspects of the environment can be ignored
depending on the level of fidelity of the program (micro-, meso-, or macro-)
and focus of the simulation. Others could to be very vital to the model and
have to seriously be taken into account when programming the entity and
its reactions to vehicles and the environment.

Typically, this is the most important activity in the creation of the model
because this is where the analyst decides whether the program is an accurate
and reasonable traffic simulation. Because traffic simulations tend to be very
complex, certain things should be taken into account such as that some of
the models features do not accurately simulate a process, the input data is
not valid, the results are not detailed enough for this model, the statistical
analysis is incorrect, or the model just has bugs or incorrect algorithms.

Animation displays are one of the best ways to analyze whether or not
the model is an accurate representation of a traffic simulation. The anal-
ysis has to be through, but can help identify cause-effect relationships and
anomalous results. Particular cause-effect relationships to look out for are
where congestion starts and is it where consistent traffic jams start or only so
often. Anomalous results (when traffic congestion starts in an illogical point)
should be observed until they can be pinpointed to a particular behavioral
or model deficiency.

When there is no animation similar methods can be used to check the
reasonableness of the model. One is to execute the model in a real-world
application to see if it stands up to the real world data. Another technique
is to perform sensitivity tests where certain key variables such as random-
number variable seeds, maximum seeds, volume of cars/area, are changed
and to analyze the data for the model responses. Plotting that data can also
give a good indication of how reasonable the data is.

2.8 Statistical Analysis of the Data

More often than not, statistically analyzing the data is often allotted the least
amount of time in comparison to the actual coding of the program. Many
simulations are often programmed to just show a situation and therefore
there is no analysis is needed. Others however, have to understand that
without statistically analyzing the data confidence cannot be placed on any
simulation. Simulation is a sampling experiment on the computer and the

data gathered has to be appropriately and statistically analyzed. One of the
most popular ways to analyze to is to pick point estimates of the measures
of effectiveness. Using different arrangements of a system and these point
estimates of measures of effectiveness, one arrangement can prove to be the
more efficient or reasonable of the others. These points can be found from
only one simulation run or from a set of runs.

2.9 Predicting and Understanding Traffic Congestion

There are two types of roadways to consider when predicting traffic. Urban
traffic flow is defined by the intersections or more importantly the traffic light
time arrangement. But that has been debunked by that amount of traffic
flow can actually by helped by the insertion of traffic lights. Traffic has
also been known to increase as well with the shutting down of certain roads.
Freeway traffic is a even harder to evaluate. The theory that if there were no
traffic lights there would be no traffic is obviously debunked by the mile long
traffic jams seen often on highways. Although many traffic jams are started
because of accidents, some are created because of one underlying principle:
when a car slows down the car behind it will always slow down more. When
one person slows down by just tapping the breaks, the following car will see
the break lights and slow down more. This interaction can actually lead to
a traffic jam. In the NETLOGO traffic simulation, it was found that when
the simulation started that unless every car had the same distance from the
other a traffic jam would result. It would be impossible to separate each
car an equal distance from each other, but this program also ignores a very
important issues. People all have their own aggression factor when it comes
to driving. Although the concept of a fast left lane does help counteract that,
there is very little that can be done to work with the human aspect of the
traffic simulation.

3 Design Criteria and Procedure

My project was made in MASON, a specific derivation of Java that is con-
dusive to making simulations. It requires that I have not only a World.java
file but a WorldWithUI file. In MASON, simulations can be run without
any type of visual representation by just running the World file. The World-
WithUI file is like a wrapper for the World filea and actually converts ev-
erything into an animation that can be seen and re-animated. I have chosen
to work primarily in animation mode because it helps me see if the cars are
actually doing anything. I have two other class files: Car and Street.

In the world there are two data members: Land and World. The Land is
the actualsparsegrid of the world where the streets are placed. The world is
a doublegrid with a layout of how the streets are actually lined up together.
This was done because one of my original problems was the streets had
a length but that length could not shown in the sparse grid because it is
only a object which therefore can only take up one unit (like the cars).
WorldWithUI uses the doublegrid to project the screen in the animation
becuase world is full of 1 and 0’s where 1’s are areas of street and 0’s are
areas of grass.

The land contains two objects: the streets and the token objects for cars.
Each street has a data member called myArea which is where the cars are
actually located. Whenever a car moves it finds its token object in World.land
and moves it the same spot. This is done again so that the streets can cycle
the cars and since the cars cannot be in two spots at one time there are
tokens for the cars in World.land. WorldWithUI uses the token objects to
project the cars on the animation.Towards thed end of the project I created
three new objects for tokens so that the cars could have different colors.

Each street runs through the cars that are located in this area starting
from end of the street to beginning of the street. Each car checks certain
critera -current speed, the max speed of the road, and the orientation of
the cars around it- to decide whether it should change either its lane or its
current speed. This is where most of the work had to be done to create a
logical and accurate simulation. The cars have to keep track of their own
tokens by knowing their location on the road, the road’s location, and from
that be able to find the location of their token in the land.The cars are the
main agents in this study although Streets carry some of the load. The cars
are the main determiners of what happens throghout the simulation.

4 Phases & Results

There have been many phases to the detailing of my case study. Each step
was made for the advancement of my project. The case study was originally
created with the organization and then from there additions could be made
to bring the project where I wanted it to.

4.1 One Dimensional Movement

Just as it sounds, the original step of making the cars move down a street at
a constant speed to the end of the track and then off.

4.2 Speed Changes as Reactions to the Environment

The phase was based on the original creation of the cars abilities to orientate
themselves to their environment and use that data to decide whether to
speed up or slow down. The original method for finding the location of
other cars proved faulty because it also took into account the cars behind
the focused car.s location. A new method had to be created but the cars
still showed too responsive reactions to the nearness and farness of the cars
around them. That problem was to be refined in the later phases when
testing was concerned.

4.3 Changing Lanes

Changing lanes seemed to be an easy task mainly because each street had
a number of lanes set its height of its data member myArea. Using the
orientation methods from the Speed Changes as Reactions to the Environ-
ment, changing lanes was created as an alternative. Although cars would not
change lanes onto other cars at this moment cars were still going through
each other. Changing Lanes had similar problems to Speed Changes in that
the cars were too responsive.

4.4 Cars Stopping at the End of Roads

This method seemed out of place but it was the creation of an algorithm
that would have the cars stop at the end of the road. Although this method
was not immediately used, it would become very useful after the creation of
intersections.

4.5 Continuous Flow of Traffic

This was perhaps one my first real triumphs which was creating a method
that enabled the program for many turns and have cars continuously flow. It
was not very difficult but began the first real showings of a traffic simulation.
These methods would end up being refined as the directions of traffic were
changed and multiple roads not starting at the ends were created.

4.6 Flow Changing by Turns

This was another easy and quick phase but another that made the traffic
simulation more concrete. This phase was based on the idea of having turns
(each time the cars moved once (could be seconds or minutes .long. depending

on how .big. the pixels are thought to be). The turns were kept track of
and during certain periods of time the volume of traffic would increase and
decrease like normal days. Because the program could only run so fast and
I have only so many minutes in a class period, I counted each turn as about
a a minute having .rush hours. about every 600 turns for about 200 turns.
A slightly unrealistic setup, but it did incorporate the idea of changing flows
of traffic. This would become very useful when I began creating situations
were cars could start piling up.

4.7 Two Directions of Traffic

This was perhaps the most difficult phase so far because it involved dealing
with perhaps the major weakness of my program: the difficulty of accounting
for both the cars on a street and the token in the sparse grid. This was
primarily difficult because when going the other direction the value of the
cars location (in the x direction) was increasing while the tokens location in
the sparse grid was decreasing. After a long while I was finally able to make
the cars go both directions and was pleasantly surprised that the amount of
changing I had to do to my continuous flow methods was very little.

4.8 Lane to Lane Interaction

Another difficult barrier was trying to account for how to change cars to
different streets while accounting for where the cars were and moving their
tokens accordingly. This was just the beginning and although was changed
to suit the more difficult concepts of intersections be the four way bridge
between eight different street objects. In its original form, the algorithm
merely checked if the car was going to go off the street, if it was then find the
next street and make the link between the car and the new street. The most
important part of this algorithm was making sure that the former street no
longer had any link to the car. The removing of the car from the former
street was where I most of my difficulties. Another difficulty was making
sure that if the car reached the end of the street of a street that ended on
the edges of the world, the car did not look for a new street but merely move
of the street.

4.9 Creating Unique Tokens

This phase was more about making the animation easier to understand then
making the program more exact. Before all of my cars had been red, and al-
though that was acceptable for the sake of focusing on the less aesthetic ideas

10

of my project, it made seeing where the cars went after a turn very difficult
to see. This phase was surprising difficult mainly because the WorldWithUI
wrapper colored the objects in the animation by color so all the tokens could
be made one color and one color only. My first strategy was to one by one
color the objects (tokens) randomly but this proved ineffective because I
could then only color the cars that were on the world when the program be-
gan and not the cars that were generated afterwards. Thus I had to create for
extensions of the Object class: ObjectRed, ObjectBlue, and ObjectGreen.
They completely extended the Object class and in fact the only difference
was that they had different names. Thus when I put down tokens I could
randomly choose a type of token and then when the Graphic was put down
I could color by the three Object classes. It was slightly convoluted but it
was quite effective.

4.10 Creating the Intersection Class

After much deliberation, I decided to create an intersection class that instead
of being a sister class to street under an abstract road class was in fact an
expansion of the street class. This proved to be useful mainly because the
cars needed areas like the street and its main difference from the street is
that along with having to move cars across its area, it had to keep track of
the lights of 8 different joining streets. There has been little to be done to
expand upon the idea of right turns or left turns but that hopefully will be
incorporated later on.

4.11 Four Way Traffic

This title is misleading mainly because I merely worked on having streets in
the up/down direction and not in all four directions at once incorporating the
intersection class. This phase was a good idea at this time mainly because it
made up update my token getting and token setting algorithms so that they
were more precise. This phase was slightly difficult because like making the
cars going in the left /right directions it pushed at the weakness of finding
the tokens in the world from knowing the location of the street and the car
on the street.

5 End Matter

I have made much progress in these last few months on creating a usable
traffic simulation. This program will be able to be changed fairly readily

11

for anyone’s studies. One drawback has been the inability to create a more
effective decision making agent however algorithms could easily be instigated
in a brief amount of time. Another drawback has been the inability to get
real life data. This eliminates the ability to predict the traffic along any
intersection but again with more time this could have been executed with
my program.

This project involves a lot of work and understanding of the interactions.
The main trial of this project was to create an organization where cars could
move in a realistic fashion and be able ot interact with the streets and the
world with little issues. This organization did hold up to all of the phases my
program was put through and in fact this served as a perfect testing platform
for my project.

If T had had more time I would have tried to expand on the graphical
nature of the program along with developing a more accurate decision making
agent. The simulation however was a success and could prove to be a useful
tool in which future programmers could expand upon.

All in all my program has proved itself to be a incredible tool and can-
vas for future programmers to expand on. I may not have not solved any
problems but I created a reliable tool in which problems can be solved on.

6 Appendix

6.1 Car.java

package sim.app.project;
import sim.engine.*;
import sim.util.*;
import sim.engine.*;
import sim.field.grid.*;
import sim.util.*;
import ec.util.x*;

public class Car

public double xdir; // deterimines the amount of pixels moved after one turn
public Street mystreet; // the connection to discover distance from cars

12

public int myAttitude; // a number from 1-10, indicator of recklessness
public World w;

public Object myC;
int myX =0;

int change;

int path;

int id = 0;

int myY=0;

public Car()

{

this.xdir = 1.4;
this.mystreet = null;
this.myAttitude = 5;
this.move=false;

}

public Car(double xdir,Street mystreet,
int change, int at, World w,int x,int y, int number)
{
this.id = number;
this.change = change;
this.xdir = 10 + ((int) (at/4));
this.mystreet = mystreet;
this.myAttitude = at;
this.w = w;
this.move = false;

X

public Int2D findToken(Int2D location, Int2D loco)
{

if (Math.abs(path)==1)

{

return new Int2D((loco.x+(path*location.x)), loco.y+location.y);

}

else return new Int2D(loco.x+location.y,loco.y + (path/2%location.x));

}

13

public Int2D setToken(Int2D newloc, Int2D loco)

{
if (Math.abs(path)==1)

return new Int2D(loco.x+(path*newloc.x), loco.y + (newloc.y));

else return new Int2D(loco.x + (nmewloc.y), loco.y + (path/2*newloc.x));

b
public int run(int paths)
{
path = paths;
int change =0;
System.out.print(" My ID!: " + id);

path = paths;

int b = checkLanes();

Int2D loco = (w.land).getObjectLocation(mystreet);
Int2D location = (mystreet.myArea).getObjectLocation(this);
Object token = new Object();

Int2D locax = findToken(location,loco);

System.out.print(" CLS" + location.x + " , " + location.y +
" SL " + loco.x + " , " + loco.y + " CLR " + locax.x + " , " + locax.y);

Int2D newloc = new Int2D();
Bag p = new Bag(Q);
int q=0;
int r=0;
double z = CheckSpeed(location);
xdir = z;

int newx = ((int) (location.x +(z)));//set new location on the road
System.out.print(" New xposition " + newx + " because speed was " + z);

if (newx>mystreet.myArea.getWidth()-1 && mystreet.Light==0)

{

Int2D locot;
System.out.println("\nON NEW ROAD ");
change = 1;
newx = newxt+l-mystreet.myArea.getWidth();
if (Math.abs(path)==1)

locot = new Int2D(loco.x+(path*mystreet.myArea.getWidth()), loco.y);
else locot = new Int2D(loco.x, (path/2*mystreet.myArea.getWidth())+loco.y);

System.out.print("Looking for Street at " + locot.x+ "

" + locot.y);

Bag s = (w.land).getObjectsAtLocation(locot);//my roads location

14

//Bag q = (mystreet.myArea).getObjectsAtLocation(location);

for(int a = 0;a < s.numObjs;a++)

{

if((s.objs[al instanceof Street))

{
mystreet = ((Street)s.objs[al);
System.out.print (" Have NEW STREET with location");

break;

loco = locot;
//mystreet.myArea.setObjectLocation(this, new Int2D(newx + locot.x,

locot.y));
System.out.print(" Position of new street" + loco.x + " ," + loco.y);

by

newloc = new Int2D(newx, (location.y+b));
p = (w.land).getObjectsAtLocation(locax); // find token like object
((mystreet) .myArea) .setObjectLocation(this,newloc);
//p = (w.land) .getObjectsAtLocation(locax);

for(int a = 0;a < p.numObjs;a++)

{

if (! (p.objs[a]l instanceof Street))
token = p.objs[al;

}
Int2D L = setToken(newloc,loco);

(w.land) .setObjectLocation(token, L);

//}

return change;

public int checkLanes()
{
// System.out.println("Check lanes");
int answer =0;
Int2D location = (mystreet.myArea).getObjectLocation(this);
if (mystreet.myArea.getHeight ()<2)
return answer;
if (mystreet.myArea.numObjectsAtLocation(location.x, location.y+1)>1)
return answer,
if (Orientation()<5)
{if (location.y==0)

{

answer = 1;

//System.out.println("I’m moving up! : Change " + this.change);
}

else if(location.y == mystreet.myArea.getHeight())

{ answer= -1;

// System.out.println("I’m moving down! : Change " + this. change);
1}

return answer,;

+

public int Orientation()
{ // System.out.println(" Orientation ");
int x =0;

Int2D location = mystreet.myArea.getObjectLocation(this);
for(x = 1; x<mystreet.myArea.getWidth()-location.x;x++)
{
if (mystreet.myArea.numObjectsAtLocation
(location.x + x*path, location.y)>0)
break;

}

// return x;

public double CheckSpeed(Int2D loco)
{
// System.out.println(" Checkspeed");
double answer =xdir;

16

//System.out.println("\n \n\n\n\n\n My Speed:" + xdir);
if (xdir>0)
{
IntBag front = new IntBag();
IntBag nul= new IntBag();
// Bag p= new Bag();
int p;

if (myAttitude>20)
{

if (Orientation()>12 & answer<myAttitude)

answer+=1;
if(Orientation()<5 && xdir>1)
answer—=1;

}

/*
if (findDA(loco)==true)
{ if (mystreet.myArea.getWidth()-loco.x>0)

answer—=1;
}
*/
return answer;
}
return answer,;
}

public boolean findDA(Int2D loco)
{

// System.out.println(" findDA");

int sum = O;

for(int t =(int)xdir; t>0;t--)

sum+=t;

if (sum>=mystreet.myArea.getWidth()-loco.x)
return true;

else return false;

}

17

6.2 Street.java

package sim.app.project;

import
import
import
import
import
import

public
{

public
public
public
public
public
public
public
public

public
{
myX= 5;
b

public Street(int dir,

this.

this
this

this.

this

this.

myArea

S1im

sim.

sim

sim.
sim.

ec.

.engine.*;
util.*;
.engine. *;
field.grid.*;
util.*;
util.*;

class Street implements Steppable

SparseGrid2D myArea; // area of the lane
int Speed;// max speed cars should take

int
int
int

myX;
myY;
direction;

int myCars; // # of cars on road

int
int

Str

{

Li
.my
.my
di
.my
Sp

Light;
Up;

eet ()

ght =end;

X =x;

Y=y;

rection= dir;
Cars = myCars;
eed = 10;

int myCars, int x, int y, int end)

new SparseGrid2D(x,y);

18

public void setCars(SparseGrid2D c)

{
this.myArea = c;
}
public void setCar(Car c, int e)
{
myArea.setObjectLocation(c, 0, e);
}
public void step(SimState state)
{

Bag p;
System.out.println("\n\n Street with direction "
+ direction + " and location" + myX);

for(int x=myArea.getWidth()-1; x>=0;x--)
for(int y=myArea.getHeight()-1; y>=0; y--)
{
int s = myArea.numObjectsAtLocation(x,y);
p=myArea.getObjectsAtLocation(x,y);

if (s>0)
{
System.out.println(" The new specimen ");
int k =((Car) (p.objs[0])) .run(direction);
if (k>0)
myArea.remove ((Car) (p.objs[0]));

b
b

19

6.3 World.java

package sim.app.project;
import sim.engine.*;
import sim.field.grid.*;
import sim.util.*;
import ec.util.x*;

public class World extends SimState
{
public DoubleGrid2D world;
public SparseGrid2D land;// area of the actual world
public int gridWidth = 100;
public int gridHeight = 100;
public int numCars =240;
public int numStreet=b;
public int turns =0;
public World(long seed)
{
super (new MersenneTwisterFast(seed), new Schedule(3));

}

public Street CreateStreet(int x, int y, int direction,
int length, int number, int light)

{

Street temp = new Street(direction, 1,0,0,light);
SparseGrid2D helper = new SparseGrid2D(length,number) ;
int hat = O;

for(int k
{

for(int z = 0; z<number;z++)
if (Math.abs(direction)==1)

0; k<length; k++)

{

world.set(x+(directionxk) ,y+z,1.0);

+

else world.set(x+z,y+(k*direction/2),1.0);
}

if ((x==0&& direction==1)|| (y==0 && direction ==2)||

20

(x==gridWidth-1 && direction ==-1)||(y==gridHeight-1
&&direction==-2))

{
for(int e =0;e<number;e++)
{
int r = 0;
int u =0; //
int i = random.nextInt(4);
int h = random.nextInt(3);
Car n = new Car(21,temp, i, random.nextInt(40)+1, this, u,e,e);

helper.setObjectLocation(n, new Int2D(0,i));
temp.setCars (helper) ;
if (Math.abs(direction)==1)
land.setObjectLocation(Tokenize (random.nextInt(3)), new Int2D(x,i+y));
else land.setObjectLocation(Tokenize(random.nextInt(3)), new Int2D(x+i,y));
}
}
schedule.scheduleRepeating(temp) ;
land.setObjectLocation(temp, new Int2D(x,y));

return temp;

}
public void start()
{
turns = O;

super.start();
land = new SparseGrid2D(gridWidth, gridHeight);
world = new DoubleGrid2D(gridWidth, gridHeight);
int x = 0;
int y = 0;

Street k = CreateStreet(0,0,1,100,5,1);

Street 1 = CreateStreet(99,6,-1,100,5,1);

Steppable decreaser = new Steppable()

{
public void step(SimState state)

21

Bag p = new Bag(Q);
turns++;
System.out.print ("TURNS: " + turns);

for(int y=0;y<gridHeight; y++)

{
for(int x

{

0; x<gridWidth;x++)

p=land.getObjectsAtLocation(x,y);
if (land.numObjectsAtLocation(x,y)>0)
if ((p.objs[0] instanceof Street))

{

int direction

}

Ob

if ((x==0&&

= ((Street)p.objs[0]).direction;
direction==1) || (y==0 && direction ==2)||

(x==gridWidth-1 && direction ==-1)||(y==gridHeight-1
&&direction==-2))
newCars ((Street)p.objs[0]);

schedule.

}

};
scheduleRepeating(Schedule.EPOCH,2,decreaser,1);

public void nextLane(Street s, Car c)

Bag b;
Int2D loca
Int2D loco

Int2D locax

= s.myArea.getObjectLocation(c);// Car’s location on Street
land.getObjectLocation(s); // Street’s Location on World
= land.getObjectLocation(c);// Car’s location on world

int t = (int) (c.xdir -((s.myArea.getWidth()-1)-loca.x));

ject token

= new Object();

System.out.print(" CAR’s Movemetn : " + t);

22

b = land.getObjectsAtLocation(loco.x + s.myArea.getWidth(), loco.y);
c.mystreet = (Street) (b.objs[0]);

(((Street) (b.objs[0])) .myArea) .setObjectLocation(c, t,0);

Bag q = land.getObjectsAtLocation(loco.x+loca.x, loco.y+loca.y);

for(int a = 0;a<q.numObjs;a++)

{

if(!(q.objs[a]l instanceof Street))
token = q.objs[al;

}

land.setObjectLocation((token), (int) (loco.x+(newloc.y), loco.y + (newloc.x));

*/

}

public Object Tokenize(int number)
{

number =1;

if (number==1)

return new ObjectRed();

else if (number ==2)

return new ObjectGreen();
else return new ObjectBlue();

3

public void newCars(Street s)
{
//working on volume
int rate =0;
int color = random.nextInt(3);
if (turns%(600)>300)

rate = 3;
else rate = 5;
for(int e = 0; e<s.myArea.getHeight(); e++)
{
Int2D loco = land.getObjectLocation(s);

int u = random.nextInt(rate);
int i = random.nextInt(4);
if(wi)

23

Car p = new Car(20.5, s, i,
random.nextInt (40)+1, this, u,i,random.nextInt(10000)+12);
s.setCar(p,i);
if (Math.abs(s.direction)==2)
land.setObjectLocation(Tokenize(color), new Int2D(loco.x+i,loco.y));
else 1land.setObjectLocation(Tokenize(color), new Int2D(loco.x,loco.y+i));

[}

6.4 WorldWithUI.java

package sim.app.project;
import sim.engine.*;

import sim.display.*;

import sim.portrayal.grid.*;
import java.awt.*;

import javax.swing.x;

import sim.util.*;

import ec.util.x*;

import sim.field.grid.*;

public class WorldWithUI extends GUIState
{
public Display2D display;
public JFrame displayFrame;

SparseGridPortrayal2D carsPortrayal = new SparseGridPortrayal2D();

FastValueGridPortrayal2D streetPortrayal = new

FastValueGridPortrayal2D("Trail");

SparseGridPortrayal2D streetsPortrayal = new SparseGridPortrayal2D() ;
public WorldWithUI(){super (new World(System.currentTimeMillis()));}

public static void main(String[] args)

{

24

System.out.print(" & ");
WorldWithUI t = new WorldWithUI();
System.out.print(" * ");

Console ¢ = new Console(t);

System.out.print(" ~");
c.setVisible(true);

}
// public WorldWithUI() { super(new World(System.currentTimeMillis())); }
public WorldWithUI(SimState state) { super(state); }
public String getName() { return "Traffic Simulation practice"; }

public String getInfo()
{
return "<H2>Traffic Simulation Demo</H2><p> Simple Car movement";

}

public void quit()
{
super.quit();

if (displayFrame'!=null) displayFrame.dispose();
displayFrame = null; // let gc

display = null; // let gc

}

public void start()
{
super.start();
// set up our portrayals
setupPortrayals();
}

public void load(SimState state)
{
super.load(state);
// we now have new grids. Set up the portrayals to reflect that

setupPortrayals();
}

// This is called by start() and by load() because they both had this

// so I didn’t have to type it twice :-)
public void setupPortrayals()
{
// tell the portrayals what to
// portray and how to portray the
System.out.print(" ! ");

streetPortrayal.setField(
((World)state) .world);
System.out.print(" @ ");
streetPortrayal.setMap(
new sim.util.gui.SimpleColorMap(
0.0, .5,Color.green,Color.gray));
System.out.print(" # ");
carsPortrayal.setField(((World)state) .land);
streetsPortrayal.setField(((World)state).land);
System.out.print(" % ");
//Car t = new Car();
int xx = ((World)state).gridWidth;
int yy = ((World)state).gridHeight;

carsPortrayal.setPortrayalForClass

(ObjectRed.class, new sim.portrayal.simple.0OvalPortrayal2D(Color.red));

carsPortrayal.setPortrayalForClass

(ObjectBlue.class, new sim.portrayal.simple.0OvalPortrayal2D(Color.blue));

carsPortrayal.setPortrayalForClass

code

(ObjectGreen.class, new sim.portrayal.simple.OvalPortrayal2D(Color.yellow));

// reschedule the displayer
display.reset();

// redraw the display

display.repaint();

26

public void init(Controller c)

6.5

{

super.init(c);

// Make the Display2D.

c.registerFrame(displayFrame) ;
displayFrame.setVisible(true);

// specify the backdrop color

We’ll have it display stuff later.
display = new Display2D(400,400,this,1);
displayFrame = display.createFrame();

-- what gets painted behind the displays

display.setBackdrop(Color.gray) ;

// attach the portrayals
display.attach(streetPortrayal, "trails");
display.attach(carsPortrayal,"Cars");

}

Intersection.java

package sim.app.project;

import
import
import
import
import
import

public
{

public
public

sim.engine.*;
sim.util.*;
sim.engine.*;
sim.field.grid.*;
sim.util.*;
ec.util.*;

class Intersection extends Street implements Steppable

Street[] mystreets;
int Length;

27

public World myW;

public Intersection (int type, World w)
{
myW = w;
Length = type;
mystreets = new Street[typel;

}

public void setStreets(Street[] helpers)

{

for(int x = 0; x<Length; x++)

{

mystreets[x] = helpers[x];

}

}
public void step(SimState state)
{

Bag p;

// if (mystreet[0].Light==1)// as in the light there is GREEN yo!

for(int x=myArea.getWidth()-1; x>=0;x--)
for(int y=myArea.getHeight()-1; y>=0; y--)
{
int paths;
int s = myArea.numObjectsAtLocation(x,y);
p=myArea.getObjectsAtLocation(x,y);

if (mystreets[0] .Light==1)

{

if (x<(myArea.getWidth()/2))

paths=-1;

else paths=1;

}

else if (y<(myArea.getHeight()))
paths=-2;
else paths = 2;

28

if (s>0)
{
System.out.println(" The new specimen ");
System.out.println("dir " + paths);
int k =((Car) (p.objs[0])) .run(paths); // will put variable for up down.

if (k>0)
myArea.remove((Car) (p.objs[0]));
}
}
}
}
6.6 Tokens

6.6.1 ObjectRed.java

package sim.app.project;
import sim.engine.*;
import sim.util.*;
import sim.engine.*;
import sim.field.grid.x*;
import sim.util.*;
import ec.util.x*;

public class ObjectRed extends Object

{

public ObjectRed()
{

super () ;

}

}

29

6.6.2 ObjectBlue.java

package sim.app.project;
import sim.engine.*;
import sim.util.*;
import sim.engine.*;
import sim.field.grid.x*;
import sim.util.*;
import ec.util.x*;

public class ObjectBlue extends Object
{

public ObjectBlue()

{

super () ;

+

+

6.6.3 ObjectGreen.java

package sim.app.project;
import sim.engine.*;
import sim.util.*;
import sim.engine.*;
import sim.field.grid.*;
import sim.util.*;
import ec.util.x*;

public class ObjectGreen extends Object

{
public ObjectGreen()

{
super () ;
}
}

30

7 References

Barcelo, J, et al. Microscopic Traffic Simulation for ATT Systems
Analysis A Parallel Computing Version. Working paper.
Physics of Transport and Traffic. University Duisburg-
Essen Department of Physics. 9 June 2005 <http://www.traffic.uni
duisburg.de/>.

Barlovic, Robert, et al. Adaptive Traffic Light Control in teh CHSCH Model for City
Traffic. Working paper. Physics of Transport and Traffic. University Duis
burg-Essen Department of Physics. 9 June 2005 <http://www.traffic.uni-duis

Chrobok, Roland, et al. OLSIM: Future Traffic Information. Working paper.
Physics of Transport and Traffic. University Duisburg-Essen Depa
rtment of Physics. 9 June 2005 <http://www.traffic.uni-duisburg.de/>.

Erol, Kutluhun, Renato Levy, and James Wentworth. Application of Agent
Technology to Traffic Simulation. Working paper. 26 May 2005
<http://www.tfhrc.gov/advanc/agent.htm>.

FHWA. Revised Monograph on Traffic Flow Theory. Ed. Nathan Gartner, Dr.,
Carroll J Messer, Dr., and Ajay K Rathi, Dr. June 1992. FHWA. 26
May 2005 <http://www.tfhrc.gov/its/tft/tft.htm>.

Kaumann, Oliver, et al. Traffic Forecast Using On-Line Simulations.
Working paper. Physics of Transport and Traffic. University
Duisburg-Essen Department of Physics. 9 June 2005 <http://
www.traffic.uni-duisburg.de/>.

Mazur, F, et al. Future of Traffic Information: Online-Simulation
of a Large Scale Freeway Network. Working paper. Physics
of Transport and Traffic. University Duisburg-Essen Depa
rtment of Physics. 9 June 2005 <http://www.traffic.uni-d
uisburg.de/>.

Schadschneider, Andreas, and Michael Schreckenberg. Car—-Oriented
Mean-Field Theory for Traffic Flow Models. Unpublished
essay. Physics of Transport and Traffic. University Duis
burg-Essen Department of Physics. 9 June 2005 <http://
www.traffic.uni-duisburg.de/>.

31

Wahle,

Wahle,

J, et al. Anticipatory Traffic Forecast Using Multi-Agent
Techniques. Working paper. Physics of Transport and Traf
fic. University Duisburg-Essen Department of Physics. 9
June 2005 <http://www.traffic.uni-duisburg.de/>.

Joachim, et al. Decision Dynamics in a Traffic Scenario.

Ms. 26 May 2005 <http://adsabs.harvard.edu/cgi-bin/nph-
bib_query?bibcode=2000PhyA. .287..669W&db_key=PHY>.

32

