
An Investigation of Genetic Algorithms Using

Audio Output

Matthew Thompson

December 14, 2004

Abstract

This paper documents my work of researching and testing genetic

algorithms.

1 Introduction

Genetic algorithms use feedback resulting from evaluating data sets to opti-
mize these data sets for optimum performance, where optimum performance
is defined by the user. The main data processing is done in LISP. The pro-
gram has a simple shell script as its frontend. CSound is used to convert the
data sets to audio files, which are heard and evaluated by the user.

2 Research

The first area of research was into various forms of genetic algorithms[1].
Topics covered included different methods of storing data, such as in a tree,
list, or array. In a tree, mutation operators include subtree destructive, node
swap, and subtree swap, and a single point subtree exchange as a crossover
method. In a list, mutations can be generative, destructive, element flip,
node swap, or sequence swap, and crossover can be single point or order
based. In an array, mutations can be destructive, element flips, or element
swaps, and crossovers can be single point or variable length. The second
area of research was into music theory, to ensure that the program would,
even with random data, produce something that sounded decent. To do this,

1



I wrote the program such that a melody will stay on key, and used a hash
table of notes and frequencies[2] to accomplish this.

3 Program Development

The initial program was made to store data in lists, mutate using element
flips, and crossover being single point. I used this type of genetic algo-
rithm because at the time of starting the project, it was the type of genetic
algorithm with which I was most familiar. After finishing a simple score pro-
cessing function that would turn a list of numbers into a usable audio file, I
integrated this with the genetic algorithm code so that the algorithm’s eval-
uation function was user input telling what the user thought of the melody
a specific population member created. Melodies were rated on a scale of 1
to 9, with higher numbers indicating a stronger like of the melody. A shell
script was written to serve as a frontend for the algorithm.

4 Program Testing

Testing of the program involved running it over repeated trials, using different
data storage, mutation, and crossover methods, and observing trends in the
improvement of the melodies created by the program.

References

[1] Intro to Genetic Algorithms
http://lancet.mit.edu/ mbwall/presentations/IntroToGAs/index.html

[2] Frequencies of Musical Notes
http://www.phy.mtu.edu/ suits/notefreqs.html

2


