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Abstract

The kernel is the heart of an operating system; it is the program
that is run when the computer first boots up, and it is responsible for
accessing the computer hardware and performing other management
tasks on behalf of all other programs. Because of its importance, the
Linux Kernel must perform perfectly; any vulnerability, instability, or
inefficiency will slow down or threaten the entire system.

Unfortunately, due to the nature of the program, kernel code can-
not be easily debugged. The kernel runs in an environment called
kernel-space, which is significantly different from the user-space envi-
ronment in which ordinary programs run. The kernel provides user-
space as an abstraction to the running programs, masking process
scheduling, disk I/O, and so forth. Because the kernel expects to run
in kernel-space, it cannot run in userspace. In addition, if there is an
error while the kernel is running, it is difficult for the code to provide
the tester with useful data about the error (because the kernel itself is
responsible for access to the hard drives and monitor). The goal of the
KDUAL project is to create a C library which implements the kernel
Application Programming Interface (API) in user-space and performs
automatic debugging. sections of kernel code can then be compiled
against this library and run as ordinary programs for convenient test-
ing.

This particular section of the project aims to implement the ker-
nel’s resource locking API, providing the core resource-locking algo-
rithms with debugging code which will provide automatic detection,
reporting, and resolution of deadlock situations, thus catching subtle
locking errors in early testing and production and easing later debug-
ging. Locking will be implemented in two parts—the core algorithms,
with their own API designed to be most convenient for use in develop-
ment, and simple wrapper code bridging that API to the kernel API.
The core algorithms will also be suitable for applications other than
kernel programming, e.g. as a generic lock-testing toolkit.



1 Background and Introduction

1.1 The Linux Kernel

The Linux Kernel performs a number of functions: device access, process
management, memory management, and file systems, for example. Thus, it
is a huge program (many thousands of lines of code). Moreover, because of
the essential functionality it provides, the kernel must perform perfectly; any
vulnerability, instability, or inefficiency can slow down or threaten the entire
system—in the worst case scenario, bad kernel code can actually damage
system hardware. Unfortunately, the very nature of kernel code also makes
it difficult to debug. Kernels cannot be run as ordinary processes; testing a
kernel requires compiling the new kernel and then reconfiguring and reboot-
ing the test machine. In addition, if there is an error in the kernel code, it
is difficult for the tester to obtain useful information about the error; first,
because the kernel is responsible for all 1/O operations, it is often impossible
to interact with the system at all, and second, if the kernel code faults it will
halt the whole system, leaving no way to analyze the crash. It is possible to
run a kernel in a debugger, but only in a very limited fashion.

The KDUAL project intends to simplify kernel coding by creating a C
library which implements the Kernel’s Application Programming Interface
(API) in user-space and provides an extensive debugging framework (for ex-
ample, automatic deadlock checking in the locking implementation). Because
this library will have an API identical to the real kernel, kernel programmers
will be able to compile code against the KDUAL library for testing purposes
without making any modifications. The resulting binary will run as an ordi-
nary user-space program, so it can be run with minimal effort, will pose no
threat to the system stability, and can be debugged using common tools such
as the GNU Debugger (gdb). In addition, the library code will automatically
provide the user with valuable debugging information.

Projects of this type have been produced before. The Arsenic [1] project
transferred many of the traditionally OS-level operations of protocol man-
agement to the Network Interface Card (NIC), improving throughput and
CPU efficiency. However, it is tied to a specific NIC and has dependen-
cies on particular parts of the kernel code, both unnaceptable for a generic
application-level implementation of kernel functionality. The Daytona [2]
project is a user-space implementation of the TCP stack (which is responsi-
ble for analyzing packets and passing them to the appropriate application).



The Daytona TCP stack provides a valuable tool for studying and extending
the TCP protocol, analyzing networks, or creating specialized user-level ap-
plciations. Alpine [3] is a similar but more expansive project that provides a
network stack and virtual network driver in userspace (the driver stops short
of actually communicating with the network device only because the Linux
system requires such access to go through the kernel). Like KDUAL, both
of these projects emphasize the need for transparency—providing a complete
system which can be used as a substitute for the ordinary kernel code with
few or no configuration changes to any of the affected applications or to the
base system. Ideally, the code should be usable simply by re-linking applica-
tions to use the substitute library, with no changes to application code or the
underlying kernel, and with no dependance on specific kernel code (so that
the code will be portable across kernel versions). Unlike Arsenic, which fo-
cuses on optimizing performance, these projects also share the KDUAL goal
of providing a system that is primarily a tool for debugging and development
rather than a production system designed as an actual replacement for the
kernel functionality (which is generally impossible when porting kernel code
to user-space, because of the overhead incurred in user-space). However, be-
cause these projects operate as a functional, integral part of a working system
(the user-level network stack is used for actual transmission of packets in a
running system), they must also deal with issues of synchronization with
the running kernel that do not occur in KDUAL (because the ersatz kernel
provided by the KDUAL library is only as a test-harness for other programs
and not to actually provide the kernel functionality).

1.2 Resource Locking
1.2.1 Basics of Locking

This particular part of the KDUAL project is focused on implementing the
kernel resource-locking API. Resource-locking is essential for successful em-
phconcurrency: having multiple separate programs running simultaneously
and working with the same resources—shared data objects, I/O handles (e.g.
sockets), physical devices (reading data from a floppy disk), or any other re-
source which the processes cannot all use at once. In the absence of locking,
such programs would simply “stomp” on each other, accessing the data simul-
taneously and potentially resulting in data corruption and program failure.
Consider a simple example: a number ¢ shared by two programs, A and B.



At some time during execution, 7 is 0, and each program wants to access
it: A wants to set it to 3, and B wants to read its value for later use. If
both processes access i without coordination, A will succeed in setting the
value, but the value B returns is unpredictable. It may be 0 (if the read is
completed before the write), 3 (if the write is completed before the read),
or some other garbage value (if the read is performed while the write is oc-
curing). To prevent an error situation, a process cannot safely operate on
the data until it ensures that no other process is operating on the data. To
achieve this, each resource is associated with a “lock” object. Generically,
the lock has two states: locked and unlocked. To use a resource, a process
must first obtain the associated lock. If the lock is currently in the unlocked
state, the process can take the lock and then proceed to manipulate the data
as it pleases, returning the lock to the unlocked state when it is done. If the
lock is taken (because some other process is using the resource), the current
process must wait on the lock until it is returned to the unlocked state (indi-
cating that the resource is no longer in use). The process can then take the
lock as before and proceed to use the resource.

The use of locks is illustrated in the classic “Dining Philosophers” thinking
puzzle. Consider a group of philosophers seated around a table, with a
plate and chopstick for each philosopher. A philosopher’s life consists of
two things: thinking and eating. Eating requires two chopsticks, so the
philosopher must take both of the chopsticks next to him (one on either
side). While thinking, a philosopher needs no chopstick. As long as the
philosophers take turns thinking and eating, they should all be able to eat.
However, a problem arises if all the philosophers attempt to eat at the same
time. Each philosopher will grab one of the adjacent chopsticks, so that there
are no chopsticks left on the table. Each philosopher will then wait for the
philosopher next to him to give up his chopstick. Since no philosopher has
two chopsticks, no philosopher will finish eating; therefore no philosopher will
ever give up a chopstick, and no philosopher can ever have two chopsticks.
Thus, the philosophers will starve to death. This can be avoided only by
coordinating their actions; for example, access to the chopsticks could be
controlled by a single lock, perhaps a bottle of hot sauce in the center of the
table, with all the philosophers agreeing that they must take the lock before
they can take chopsticks. When a philosopher is hungry and neither of his
neighbors is eating, he takes the bottle, takes both chopsticks, puts the bottle
back, and eats. When he is done he takes the bottle, yields the chopsticks,
and puts the bottle back again. A philosopher will not attempt to get the
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bottle unless both chopsticks are available, and when he holds the bottle the
other philosophers are prohibited by their agreement from interfering with
his taking of the chopsticks. Since a philosopher cannot end up with only one
chopstick, the starvation situation above has been avoided; in programming
terminology, taking both chopsticks has become an atomic operation: it will
either fail or succeed completely, and is guaranteed not to result in a partially
altered state or to produce any intermediate states visible to other processes.
When the overall set of actions that needs to be accomplished is not atomic
(e.g. taking the chopsticks), resources can be safely accessed by binding that
access to a single, atomic operation (e.g. taking the bottle).

1.2.2 Deadlock

Problems can arise in locking when one or more processes end up in deadlock:
the processes “spin” forever while trying to take a lock, and are never able to
take it, thus bringing the system to a halt. To illustrate this with the dining
philosophers problem, suppose that there were two locks involved; perhaps
one for the chopsticks and one for the food. To be able to eat, a philosopher
must therefore hold both locks. The same problem occurs as with needing
to hold both chopsticks: if two philosophers each get one lock, each will
wait forever to get the other lock, again resulting in starvation. In computer
programming, this condition is known as the deadly embrace. While the
classic example involves only two processes and two locks, the same principle
can be extended to any number of locks sought by any number of processes;
deadlock occurs anytime a process cannot obtain the lock it is waiting for
without giving up a lock it already holds. For example, the most trivial case
of deadlock occurs when a process attempts to take a lock it already holds;
each time the process checks the lock, it is in the locked state, so the process
will keep waiting. However, it will never unlock the lock (since it is busy
trying to lock it) and so will wait forever.

Deadlock causes all processes invovled to hang and makes the resource
controlled by the lock unavaiable. Deadlock in the kernel is an especially
severe problem, because it will hang the entire system—if the kernel locks
up, userspace programs will also be unable to run, and the entire system
becomes useless and requires reboot. In addition, deadlock can be a very
difficult problem to identify and resolve, since it can involve multiple differ-
ent processes and usually is not reliably reproducible (since it requires the
processes to take their locks with very specific timing). This locking im-



plementation will therefore include built-in testing for deadlock situations,
vastly simplifying the debugging process and helping to produce more reli-
able code. It will also provide other valuable debugging features, e.g. status
messages printed by certain segments of the locking code, which will help
developers isolate and correct problems.

2 Theory

2.1 Kernel-space User-space Transition

A computer running the Linux Operating System can be viewed as a series
of “layers”, as in Fig. (1). Each layer is intended to be dependent only on the
layers immediately adjacent to it. At the bottom is the machine hardware:
processors, hard drives, video cards, RAM, and so on. Immediately above
this is a layer of code called drivers. Each driver is an independent code
module responsible for interacting with a single specific piece of hardware.
Above the drivers is a layer of abstractions intended to mask the device-
specific implementations of the drivers. For example, regardless of the type of
device files are stored on (e.g. a local IDE or SCSI hard drive or a networked
fileserver) and regardless of the type of filesystem present on the device (e.g.
ext2,ext3, ReiserFS), processes will see the standardized system presented by
the Virtual File System code. This allows a uniform method for operating
on any files used by the system; the VFS dispatches instructions to the
driver responsible for the particular device, which can then take whatever
device-specific actions are appropriate. Finally, above this are the syscalls
(for System Calls), which are the hooks intended to be invoked by regular
user processes. These are the calls found in the second section of manpages
as listed by man syscalls. As the manpage states, “The system call is the
fundamental interface between an application and the Linux kernel.” This
exemplifies the nature of the kernel layers. To provide a simple example:
a user program wants to write data to a file. It invokes the write syscall
and knows that upon the call’s completion the write has been accomplished.
The write call tells the Virtual File System to write the data. The VFS in
turn communicates with the appropriate filesystem driver; in the case of the
TJCSL, the Andrews File System driver. This driver then communicates
with the the driver for the actual physical device where the data will be
written; this last driver is responsible for actually committing the data to
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Figure 1: Operating Systems Layers

disk. However, this is all invisible to the original program. That program is
completely unaware of any layer beneath the write call and the various other
syscalls it uses to manipulate files; for all it knows, the system is pulling data
from the ether.

Unfortunately, this structure makes debugging the kernel very difficult;
since it is the bottom layer, all other layers ultimately depend on it, and
any failure will have serious ramifications. Also, because the entire OS de-
pends on the kernel, buggy code in the kernel can and in all likelihood will
make the system unstable and/or insecure. This has a two-fold effect: first,
it introduces the possiblity of data corruption or other system damage, and
second, it prevents active debugging analysis after a crash. Moreover, it is
difficult and somewhat unreliable to try to run the kernel in the kdb debug-
ger. Typically, a kernel testing setup involves a seperate test machine with
a serial console (another machine connected to it via serial cable that will
allow access to the machine in the event of problems, e.g. a failure of the
keyboard drivers). If there is a problem with the kernel, a few cryptic er-
ror messages will appear on the serial console and the system will become
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completely inoperable. This system of debugging is slow, requires additional
hardware (a second computer and serial cable), and provides very little usable
information.

The goal of KDUAL is to simplify this process by moving the code to be
tested up from its ordinary layer into the top layer—user-space. Running in
user-space, the code would not pose the same threat to system integrity and
stability that it ordinarily would. The running kernel is unaffected by a code
failure, so it remains stable, preserving the system and allowing post-crash
debugging. In addition, code running as a normal process can be debugged
using powerful, already-existing debuggers like gdb. This eliminates the need
for additional hardware and provides vastly more infromation about the er-
ror. However, kernel code is dependant upon the adjacent layers to funtion:
the write and read syscalls can hardly function without the filesystem pro-
vided by the VFS. As is the nature of the layered system, these are not
available to user-space programs. Thus, the needed functionality must be
re-implemented in user-space, preserving the existing kernel API so that
switching from compilation against the user-space testing library to the ac-
tual kernel will be seamless. The KDUAL project will produce a user-space
library of C code which implements the essential parts of the kernel API and
which will provide the tester with built-in debugging checks and information
that will further simplify the testing process.

2.2 Locking Implementation
2.2.1 Principles of Implementation

One of the key kernel components which must be implemented is resource
locking: ensuring safe access to shared resources through the use of special
objects (locks,semaphores,mutezes), as explained in the previous section. The
focus of this project is completing the KDUAL implementation of the ker-
nel’s locking API, providing both the core locking algorithm and a powerful
debugging infrastructure including automated deadlock detection.
Atomicity is the key feature of a locking system. If, in the example of the
dining philosophers, the lock was two bottles of hot sauce, then two philoso-
phers could each obtain one bottle, and end up fighting over the lock in the
same manner they fought over the chopsticks. The value of a lock is that
the operation of taking it is necessarily atomic; thus, when the lock is used
to control more complicated actions (e.g. taking two chopsticks), the entire



set of actions becomes atomic. If the lock is not taken, the entire sequence
is immediately aborted, and the operation thus fails without changing the
state. If the lock is taken, the other actions can be performed safely, because
no one else can interfere with them until the lock is released; thus the change
in state is not visible until the entire process completes. In the philosophers
example, taking a single object is inherently atomic; we assume that the
philosophers have the dignity to avoid fighting over the hot sauce. In pro-
gramming, certain simple operations are guaranteed to be atomic because
of the CPU architecture. The exact operations available differ among archi-
tectures, but all architectures provide some atomic operation or operations
which make it possible to alter a value if and only if it matches another value;
e.g. take a lock only if it is unlocked. Thus, the heart of any locking systems
is a simple numerical value that can be atomically altered by individual CPU
instructions.

Building a locking implementation from scratch would be tremendously
difficult, and is unnecessary given the number of existing locking implementa-
tions. The kernel code itself provides a very simple locking implementation;
this could theoretically be ported to user-space, but building on it to provide
the additional functionality desired for the KDUAL locking implementation
would be very difficult. The POSIX Threads (pthreads) library provides a
complete, powerful user-space locking implementation, and is thus suitable
for use in KDUAL. Naturally, however, it does not conform to the kernel
API. The KDUAL locking implementation thus consists of a lock structure
and a set of methods based around the pthreads library, providing more pow-
erful debugging features with the Linux Kernel API. The KDUAL code will
also help debugging by providing built-in checking for deadlock conditions
where processes wait forever trying to obtain a lock. This checking will be
accomplished by a dedicated deadlock-detection thread that monitors the
dependencies of all the threads and responds to deadlock conditions.

2.2.2 Deadlock Detection

There are three basic strategies for dealing with the deadlock problem, as
per Holliday [4]. In prevention, the protocol of the locking system inherently
makes deadlock impossible (e.g. a system where a process is not allowed to
hold resources while waiting on resources). This is a straightforward method
of eliminating deadlock, but requires the system to be designed that way from
the ground up. As such, it is not feasible for the KDUAL project because



the project must replicate the API of the locking system used in the Linux
Kernel, which is not a prevention system. The other two methods, avoidance
and detection, could both be implemented in the KDUAL code because they
would require modifications only to the internal implementation, not the API.
However, an avoidance system, while preventing deadlock during testing,
would provide no long-term benefit (when the code is integrated with the
kernel proper) and as such could actually be concealing flaws that would
then be revealed during production. A detection system will catch and deal
with deadlocks in the running system and provide information which can
be used by the developer to fix the code being tested so as to prevent the
deadlock.

The detection thread relies on a structure called a Wait-For-Graph (WFG)
as in Fig. (2), a common concept in deadlock detection. The nodes of the
WFG represent processes in the system, and the (directed) edges of the graph
are dependencies between processes, where an edge ¢ — j indicates that pro-
cess i is waiting for a resource currently held by j. If there is a deadlock,
it will be detectable in the WFG as a cycle: a complete path from any
node back to itself. The definition of deadlock is that the process is waiting
on a resource that it cannot obtain without releasing a resource it already
holds; this will necessarly result in a cycle in the WFG, because the process
must (through some number of intermediaries) depend on itself. Thus there
must be some series of edges leaving from a node and pointing back to the
node. The reverse is also true: a cycle in the WFG always indicates a dead-
lock situation: the cycle indidcates that the process ultimately depends on
itself, meaning that it is necessarily involved in deadlock and requires out-
side intervention. This means that checking for cycles in a WFG will detect
all deadlocks without identifying non-deadlock situations as deadlocks (false
positives); thus it is a reliable method for detection.

3 Design Criteria

A few others are beyond the scope of the project, in particular the scheduler,
block devices, and the TCP/IP stack. The primary focus of the KDUAL
project is on implementing the memory allocation algorithm, resource ac-
cess controls such as spinlocks and semaphores, and the Virtual File System
(VES). Of these three, this project addresses resource control. As with all
the components of the KDUAL system, the guiding principle is to implement
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Figure 2: Wait-For-Graph
The Wait-For-Graph at top clearly indicates a deadlock via the cycle (in
red) between processes 2 and 3. The lock situation from which the WFG is
constructed is shown below: 2 and 3 wait on each other’s locks, while
process 1 is merely waiting on one of the locks and is not involved in the
actual deadlock.
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the functionality provided by the kernel.

All code will be written in C for speed and compatibility, and will follow
the kernel style of taking advantage of special extensions for the GNU’s Not
UNIX (GNU) C compiler (gec). Development will dependent on a few basic
tools, such as the Vi IMproved (VIM) text editor and the GNU make utility
for compiling code. The Concurrent Versions System (CVS) will be used to
maintain the code repository, providing reliable archives and safe access for
multiple developers. CVS in combination with the cvsweb.cgi perl script
also serves as a convenient mechanism for making the code available online.

The ultimate test of a complete KDUAL system would primarily be en-
suring that kernel code can successfully compile and run. Testing would
require using code to test each function of the provided API, and running
under various conditions (for example, low memory), to ensure proper perfor-
mance. Likewise, testing of the locking system is primarily a test of the API,
ensuring that the various functionality—e.g. creating and releasing locks—is
complete.

4 Results and Future Development

The first stage of testing has been to confirm the viability of the basic meth-
ods (locking, unlocking, status checking, etc). So far, these tests have succes-
fully completed, proving the capability of the locking system in a one-thread
environment. The next tests will confirm the viability of the locking methods
in a multiple-thread environment. The final testing phase will be to check
the abilities of the deadlock-determination algorithm when it is complete.

The KDUAL library will greatly simplify and speed up the kernel devel-
opment process. This will be an immediate benefit to the kernel development
community. It will also have much more far-reaching effects, because a better
kernel development produce will benefit all users of the kernel—a significant
group including dedicated hackers, more casual users experimenting with
non-Windows systems, schools, and even important businesses (including
Microsoft’s web hosts). In addition, the library and information about its
development will provide a valuable basis for anyone attempting to undertake
a similar project in kernel implementation—for example, producing a binary
and library focused more on providing a viable production environment for
“virtual servers” (like the User Mode Linux project).
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APPENDIX

A lock.h

#ifndef KCORE_LOCK_H_
#define KCORE_LOCK_H_ 1

#include <kcore/stddef.h>
#include <kcore/types.h>

#include <pthread.h>

/*some includes that we need for the memory functions
* these probably get included somewhere else in a full compile
* but we need them for a standalone locking library
*/

#include <alloca.h>

#include <string.h>

#include <stdlib.h>

/*error codex/
#tdefine KC_DEADLOCK 1
/*These ARE bitwise flags*/

#define KC_LOCK_DEFAULT 0x00 /*so we don’t have to use 0 for flags */
#define KC_LOCK_RECURSIVE 0x01 /*allow recursive lock taking */
#define KC_LOCK_DEADLK_NOSEGV 0x02 /*return an error code instead of SEGVir

/*These are NOT BITWISE FLAGS*/
#define KC_STATUS_UNLOCKED 0x00
#define KC_STATUS_LOCKED 0x01
#define KC_STATUS_SEARCH 0x02

/*Debugging stuff: yes this should probably be system-wide not
* just locking. This is to provide information for debugging
* of the library code itself, not applications that use it
* Higher values for KC_LOCK_DEBUG activate more debugging
* so higher values for "level" mean lower importance.

*/

13



#ifndef KC_LOCK_DEBUG
#define KC_LOCK_DEBUG O
#endif

/*macros for printing debug messages

* dbg prints if debugging is on--same as dbg_pri(msg,1)

dbg_cond prints if cond is true

dbg_pri prints if the debugging level is high enough
dbg_pri_cond if the level is high enough and cond is true
eval_* runs arbitrary code as per the above restrictions

eval tacks a semicolon on to the end, so leave the last one off;

* ¥ ¥ X ¥

*/
#if KC_LOCK_DEBUG
#define dbg(msg)\

do{\
printf ("*x*DEBUG**:") ;\
printf (msg) ;\
printf("\n");\
twhile(0)
#define dbg_cond(msg,cond)\
do{\
if ((cond)){\
printf ("*x*xDEBUG**:") ;\
printf (msg) ;\
printf ("\n");\
A
Jwhile(0)
#define dbg_pri(msg,level)\
do{\
if (KC_LOCK_DEBUG >= (level)){\
printf ("*x*DEBUG**:") ;\
printf (msg) ;\
printf("\n");\
N
}while(0)
#define dbg_pri_cond(msg,level,cond)\
do{\

if ((KC_LOCK_DEBUG >= (level)) && (cond)){\
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#define

#define

#define

#define

#else
#define
#define
#define
#define
#define
#define
#define
#define
#endif

printf ("**DEBUG**: ") ;\
printf (msg) ;\
printf("\n");\
ja
}while(0)
dbg_eval (foo)\
do{\
foo;\
}while (0)
dbg_eval_cond(foo,cond)\
do{\
if ((cond)){\
foo;\
A\
}while(0)
dbg_eval_pri(foo,level)\
do{\
if (KC_LOCK_DEBUG >= (level)){\
foo;\
Ja
}while (0)
dbg_eval_pri_cond(foo,level,cond)\
do{\
if ((KC_LOCK_DEBUG >= (level)) && (cond)){\
foo;\
A
}while (0)

dbg(msg) do{}while(0)

dbg_cond (msg,cond) do{}while(0)
dbg_pri(msg,level) do{}while(0)
dbg_pri_cond(msg,level,cond) do{}while(0)
dbg_eval (msg) do{}while(0)
dbg_eval_cond(msg,cond) do{}while(0)
dbg_eval_pri(msg,level) do{}while(0)
dbg_eval_pri_cond(msg,level,cond) do{}while(0)
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BEGIN_C_DECLS typedef struct kc_lock kc_lock_t;
struct kc_lock
{

char magic1[4];

pthread_mutex_t mutex;

int status;

pthread_t owner;
kc_size_t count;

pthread_cond_t lock;
pthread_cond_t unlock;

pthread_t search_thread;
kc_lock_t *search_next;
kc_lock_t *search_prev;
kc_size_t search_refs;
pthread_cond_t search_done;
pthread_cond_t search_no_refs;
char magic2[4];

+;

/* Allows clients to see if the lock is in it’s pure state
* This is only for debugging of the locking library itself
* Returns 1 if all variables in the lock match the values set by
* kc_lock_create(), O otherwise
*/

#if KC_LOCK_DEBUG

int kc_lock_pure (kc_lock_t * lock);

#endif

/* Create a lock
* returns errno on error
* 0 on success
*/

int kc_lock_create (kc_lock_t ** lock);
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/* Ways to obtain a lock */

int kc_lock_mustlock (int flags, kc_lock_t * firstlock, ...);

int kc_lock_lock (int flags, time_t timeout, kc_lock_t * firstlock,
o)

int kc_lock_unlock (kc_lock_t * lock);

/* Status information */
int kc_lock_locked (kc_lock_t * lock);

/*Wait on lock conditionx/
int kc_lock_waitlock (time_t timeout, kc_lock_t * lock);
int kc_lock_waitunlock (time_t timeout, kc_lock_t * lock);

/*Check for deadlock
* Return EDEADLK on deadlock, O on success
* timeout should be NULL to sleep forever
* 0 to never sleep
*/
int kc_lock_check_deadlock (time_t * timeout, kc_lock_t * lock);
END_C_DECLS
#endif /* not KCORE_LOCK_H_ */

B lock.c

/*

* Locking implementation based on the pthread_mutex_t providing automatic
* deadlock checking

*

*/

#include <stdarg.h>

#include <stdio.h>

#include <kcore/lock.h>

#include <pthread.h>

/*this should probably be OUR errno.hx*/
#include <errno.h>
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#tdefine MAGIC1 "KcLk"
#tdefine MAGIC2 "kC1K"

#define recursive(x) (x & KC_LOCK_RECURSIVE)
#define nosegv(x) (x & KC_LOCK_DEADLK_NOSEGV)

/*Last lock in the listx/
static __thread kc_lock_t *last_lock = NULL;
/* Have the magic numbers changed? */
static inline void
check_magic (kc_lock_t * lock)
{

SEGV_CHECK (memcmp (lock->magicl, MAGIC1, 4)

|| memcmp (lock->magic2, MAGIC2, 4));

/* create a lock
* returns errno on error
* 0 on success */
int
kc_lock_create (kc_lock_t ** lock)
{
pthread_mutexattr_t err_attr;
pthread_mutexattr_init (&err_attr);
pthread_mutexattr_settype (&err_attr, PTHREAD_MUTEX_ERRORCHECK_NP);
pthread_mutex_t templ_mutex;
pthread_mutex_init (&templ_mutex, &err_attr);
//pthread_mutex_t templ_mutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
pthread_cond_t templ_cond = PTHREAD_COND_INITIALIZER;
*lock = (kc_lock_t *) malloc (sizeof (**lock));
if ('*lock)
return errno,
memcpy ((*xlock)->magicl, MAGIC1, 4);
(x*lock)—>status = KC_STATUS_UNLOCKED;
(*lock)->count = 0;
(¥lock)->search_prev = NULL;
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(xlock)->search_next = NULL;
(*lock)->mutex = templ_mutex;
(¥lock)->lock = templ_cond;
(*lock)->unlock = templ_cond;
(*lock)->search_done = templ_cond;
(*lock)->search_no_refs = templ_cond;
(¥lock)->search_refs = 0;

memcpy ((*xlock)->magic2, MAGIC2, 4);

return O;
}
#if KC_LOCK_DEBUG
int
kc_lock_pure (kc_lock_t * lock)
{

check_magic (lock);
if (lock->status != KC_STATUS_UNLOCKED)
return O;
if (lock->count != 0)
return O;
if (lock->search_prev != NULL)
return O;
if (lock->search_next != NULL)
return O;
if (lock->search_refs != 0)
return O;
return 1;
}
#endif

/* Lock with infinite timeout */
int
kc_lock_mustlock (int flags, kc_lock_t * firstlock,
{
int status;
va_list ap;
kc_lock_t *lock;
kc_size_t count = 1;
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kc_lock_t **locklist;
dbg_pri ("Reached kc_lock_mustlock", 2);
#if O
va_start (ap, firstlock);
while (lock = va_arg (ap, kc_lock_t *))
count++;
va_end (ap);
locklist = alloca (count * sizeof (*locklist));
va_start (ap, firstlock);
/* sort the locks in memory order so they can be safely taken */
while (lock = va_arg (ap, kc_lock_t *));
va_end (ap);
#endif
/*begin the process of actually taking the locks */
/* foreach lock */
va_start (ap, firstlock);
lock = firstlock;
do
{
kc_lock_t *my_last_lock = last_lock;
dbg_pri ("Entered locktaking while loop (in kc_lock_mustlock)",
2);

/*SEGV_ON(status = pthread_mutex_lock(&my_last_lock->mutex));
while(my_last_lock->search_refs !=0){
SEGV_ON(status=pthread_cond_wait (&my_last_lock->search_no_refs,&my_last_:
} */

SEGV_ON (status = pthread_mutex_lock (&lock->mutex));

/* WE NOW HOLD THE MUTEX */

/* easy case: take the lock */

if (lock->status == KC_STATUS_UNLOCKED)

{
lock->owner = pthread_self ();
lock->status = KC_STATUS_LOCKED;
lock->count++;
/* something’s wrong */
SEGV_ON (lock->search_refs != 0);
SEGV_ON (pthread_mutex_unlock (&lock->mutex));
continue;
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+

dbg ("The lock was not unlocked; getting ready to wait");

/* recursive case */

if (lock->owner == pthread_self ())

{
dbg_cond
("You have attempted to take a lock twice without the recursion flag!'
lrecursive (flags));
SEGV_ON (!recursive (flags));
lock->count++;
SEGV_ON (pthread_mutex_unlock (&lock->mutex));
continue;
+

/* We actually have to wait on the lock */

/* We have to loop in case we don’t snag the lock after waiting:
* need to redo deadlock check before doing anything else
* again, WE HOLD THE MUTEX BUT NOT THE LOCK */

while (lock->owner != pthread_self ())

{
/*FIXME: all of this should get altered so that
* the codnitions for the deadlock checking routine are
uniform

TODO:

check for legitimate conditions

call deadlock

decide based on return value
* last_lock->next MUST ALREADY BE SET x*/

pthread_t prev_checker = lock->search_thread;

/* We get to search */

if ((lock->status != KC_STATUS_SEARCH) ||

(lock->search_thread > pthread_self ()))

* ¥ ¥ X *

lock->search_thread = pthread_self ();
/*deadlock check! */

lock—>search_thread = prev_checker;
pthread_cond_broadcast (&lock->search_done);

/* we can wait for the lock now */
pthread_cond_wait (&lock->unlock, &lock->mutex);
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if (lock->status == KC_STATUS_UNLOCKED)
{
lock->owner = pthread_self ();
lock->status = KC_STATUS_LOCKED;
lock->count++;
SEGV_ON (pthread_mutex_unlock (&lock->mutex));

/*wait for lower-ranked checkers to be done */
while ((lock->status == KC_STATUS_LOCKED) &&
(lock->search_thread < pthread_self ()))
pthread_cond_wait (&lock->search_done, &lock->mutex);
lock->search_thread = pthread_self ();
/* deadlock check! */
lock->search_thread = prev_checker;
pthread_cond_broadcast (&lock->search_done);
/* we can wait for the lock now */
pthread_cond_wait (&lock->unlock, &lock->mutex);
if (lock->status == KC_STATUS_UNLOCKED)
{
lock->owner = pthread_self ();
lock->status = KC_STATUS_LOCKED;
lock->count++;
SEGV_ON (pthread_mutex_unlock (&lock->mutex));

}
while (lock = va_arg (ap, kc_lock_t *));
va_end (ap);
return O;

}

/* Lock with timeout*/
int

22



kc_lock_lock (int flags, time_t timeout, kc_lock_t * firstlock, ...)
{
/*FIXME: this code is just a copy of kc_lock_mustlock with
* the commented junk and deadlock-checking stuff removed and
* timeouts added. It is a temporary solution because I needed
* the timeout functionality; once kc_lock_mustlock() is put in
* decent shape, this should change to reflect that.
* (Also it will let pthread_mutex_lock() run forever)
*/
int status;
va_list ap;
kc_lock_t *lock;
kc_size_t count = 1;
kc_lock_t **locklist;
struct timespec stoptime;
stoptime.tv_sec = time (NULL) + timeout;
stoptime.tv_nsec = 0;
dbg_pri ("Reached kc_lock_lock", 2);
/* foreach lock */
va_start (ap, firstlock);
lock = firstlock;
do
{
kc_lock_t *my_last_lock = last_lock;
dbg_pri ("Entered locktaking while loop (in kc_lock_lock)", 2);
SEGV_ON (status = pthread_mutex_lock (&lock->mutex));
/* WE NOW HOLD THE MUTEX */
/* easy case: take the lock */
if (lock->status == KC_STATUS_UNLOCKED)

{
lock->owner = pthread_self ();
lock—->status = KC_STATUS_LOCKED;
lock->count++;
/* something’s wrong */
SEGV_ON (lock->search_refs != 0);
SEGV_ON (pthread_mutex_unlock (&lock->mutex));
continue;
}
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dbg ("The lock was not unlocked; getting ready to wait");

/* recursive case */

if (lock->owner == pthread_self ())

{
dbg_cond
("You have attempted to take a lock twice without the recursion flag!'
lrecursive (flags));
SEGV_ON (!recursive (flags));
lock->count++;
SEGV_ON (pthread_mutex_unlock (&lock->mutex));
continue;
}

/* We actually have to wait on the lock */

/* We have to loop in case we don’t snag the lock after waiting:
* need to redo deadlock check before doing anything else
* again, WE HOLD THE MUTEX BUT NOT THE LOCK */

while (lock->owner != pthread_self ())

{
pthread_cond_timedwait (&lock->unlock, &lock->mutex,
&stoptime) ;
if (lock->status == KC_STATUS_UNLOCKED)
{
lock->owner = pthread_self ();
lock->status = KC_STATUS_LOCKED;
lock->count++;
SEGV_ON (pthread_mutex_unlock (&lock->mutex));

+
while (lock = va_arg (ap, kc_lock_t *));
va_end (ap);
return O;

}

/*Release Lock

* The worst case scenario here is that someone is in the process of
* deadlock-checking this lock.

*x *x/
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int
kc_lock_unlock (kc_lock_t * lock)

{

dbg ("Reached kc_lock_unlock");
SEGV_ON (pthread_mutex_lock (&lock->mutex));
if (lock->owner != pthread_self ())

return -1;
dbg ("Checked to make sure we own the lock");
/*check lock->count to handle recursive takes
* don’t actually unlock it until there are no
* recursive takesx*/
dbg_eval (printf

("Lock count is %d in call to kc_lock_unlock()\n",
lock->count)) ;

if (lock->count)

lock->count—-;
if (lock->count)

{

SEGV_ON (pthread_mutex_unlock (&lock->mutex));
return O;

}
SEGV_ON (pthread_mutex_unlock (&lock->mutex));
lock->status = KC_STATUS_UNLOCKED;
/*do something w/ lock->search_refs here? */
lock—>search_next = lock->search_prev = NULL;
//pthread_cond_broadcast (&lock->unlock) ;
dbg ("Unlocked the lock");
return O;

/* Check lock status*/
int
kc_lock_locked (kc_lock_t * lock)

{

SEGV_ON (pthread_mutex_lock (&lock->mutex));
if (lock->status == KC_STATUS_UNLOCKED)

{
SEGV_ON (pthread_mutex_unlock (&lock->mutex));
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return O;

}
SEGV_ON (pthread_mutex_unlock (&lock->mutex));
return 1;

+
/* Wait for condition without affecting the lockx*/
int kc_lock_waitlock (time_t timeout, kc_lock_t * lock);

int kc_lock_waitunlock (time_t timeout, kc_lock_t * lock);

/* Check for a deadlock condition

¥ If timeout is O never wait on a lock —- if it is NULL wait forever
* Returns O on success, KC_DEADLK if there is deadlock */

int

kc_lock_check_deadlock (time_t * timeout, kc_lock_t * start)

{

#if O
/*TODO:

* Precond: we hold the mutex on start

we are allowed to be searching (i.e. there is no lower-ranked searcher)
last_lock->next points to the next lock in the chain

Steps:

check for ownership--if it belongs to us, it’s deadlock

check the next pointer--if it’s null, it’s all good

set search_thread and status (preserving old values)

up the refcount <- this doesn’t matter anymore

yield the mutex and wait on the next mutex

wait until we are allowed to search on that mutex

RECURSE

spin on start’s mutex until we are the current search thread

if we were not the current search thread, somebody supplanted us,

so we should go back up-> i.e. recurse again. and again. and again.
WE SHOULD NOT GO BACK UP IF THE RECURSIVE CALL RETURNED AN ERROR
restore the old status and thread

return (the status of the recursive call)

On deadlock:

this is messy because we don’t want to fall back along the list until
the chain is broken. So we keep track of the current mutex, grab last_lock,

¥ OX X X K X X X K XK X X X ¥ X X ¥ ¥ ¥
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* make the pointer null, then return to the end of the chain and start falling
* REFCOUNT nonsense with breaking the pointer.
*/
if (start->owner == pthread_self ())
{
/*we’re screwed, do the deadlock thing */
return KC_DEADLK;
}
if (!start->search_next)
return O; /*end of list! */
/*we have to go to the next lock
* so preserve the datax/
int status = start->status;
pthread_t search_thread = start->search_thread;
start->status = KC_STATUS_SEARCH;
start->search_thread = pthread_self ();
start->search_refs++;
/*yield the lock */
SEGV_ON (pthread_mutex_unlock (&start->mutex));
kc_lock_t *next = start->search_next;
SEGV_ON (pthread_mutex_lock (&next->mutex));
int loop = O;
do
{
/*wait for searchers if needed */
while ((next->status == KC_STATUS_SEARCH)
&% (next->search_thread < pthread_self ()))
pthread_cond_timedwait (&next->search_done, &next->mutex,
/*FIXME*/) ;
/*recurse! */
int failed = kc_lock_check_deadlock (timeout, next);
if (failed)
{
/*dothatcrazydeadlockthang */
return KC_DEADLK;
}
/*wait for searchers who passed us to finish */
while (next->search_thread != pthread_self ())
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pthread_cond_wait (&next->search_done, &next->mutex);
}
while (!loop);
#endif
return O;

}

C lock test.c

#include <stdlib.h>
#include <stdio.h>
#include <kcore/lock.h>

void simple_tests ();

int

main (void)

{
pthread_t threadl, thread2, thread3;
pthread_create (&threadl, NULL, (void *) simple_tests, NULL);
pthread_create (&thread2, NULL, (void *) simple_tests, NULL);
pthread_create (&thread3, NULL, (void *) simple_tests, NULL);
pthread_join (threadl, NULL);
pthread_join (thread2, NULL);
pthread_join (thread3, NULL);

return O;
}
void
simple_tests ()
{
kc_lock_t *lockl, *lock2; /*locks yay */

int err = 0;
if ((err = kc_lock_create (&lockl)))
{
printf ("%d: Error %d creating lock\n", pthread_self (), err);
exit (1);
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}
if ((err = kc_lock_create (&lock2)))
{
printf ("%d: Error ’%d creating lock\n", pthread_self (), err);
exit (1);
}

/*lock seperately with kc_lock_mustlock */
printf ("%d: Attempting to take locks one and two seperately\n",
pthread_self ());
kc_lock_mustlock (KC_LOCK_DEFAULT, lockl, NULL);
kc_lock_mustlock (KC_LOCK_DEFAULT, lock2, NULL);
printf ("%d: Calls succeeded, checking status of both locks\n",
pthread_self ());
if ('kc_lock_locked (lockl))
{
printf ("%d: ERROR: lockl appeared to be unlocked\n",
pthread_self ());
exit (1);
}
if ('kc_lock_locked (lock2))
{
printf ("%d: ERROR: lock2 appeared to be unlocked\n",
pthread_self ());
exit (1);
}
printf ("%d: Both locks appear locked\n", pthread_self ());
printf ("%d: Attempting to release locks one and two\n",
pthread_self ());
if (kc_lock_unlock (lockl))

{
printf ("%d: ERROR: failed to unlock lockl\n", pthread_self ());
exit (1);
}
if (kc_lock_unlock (lock2))
{
printf ("%d: ERROR: failed to unlock lock2\n", pthread_self ());

exit (1);
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}
printf ("%d: Calls succeeded, checking status of both locks\n",
pthread_self ());
if (kc_lock_locked (lockl))
{
printf ("%d: ERROR: lockl appeared to be locked\n",
pthread_self ());
exit (1);
}
if (kc_lock_locked (lock2))
{
printf ("%d: ERROR: lock2 appeared to be locked\n",
pthread_self ());
exit (1);
}
printf ("%d: Both locks appear unlocked\n", pthread_self ());

/*lock together with kc_lock_mustlock */
printf ("%d: Attempting to take locks one and two in one call\n",
pthread_self ());
kc_lock_mustlock (KC_LOCK_DEFAULT, lockl, lock2, NULL);
printf ("%d: Call succeeded. Checking lock status\n",
pthread_self ());
if ('kc_lock_locked (lockl))
{
printf ("%d: ERROR: lockl appeared to be unlocked\n",
pthread_self ());
exit (1);
}
if ('kc_lock_locked (lock2))
{
printf ("%d: ERROR: lock2 appeared to be unlocked\n",
pthread_self ());
exit (1);
}
printf ("%d: Both locks appear locked\n", pthread_self ());
printf ("%d: Attempting to release locks one and two\n",
pthread_self ());
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if (kc_lock_unlock (lockl))

{
printf ("%d: ERROR: failed to unlock lockli\n", pthread_self ());
exit (1);

}

if (kc_lock_unlock (lock2))

{
printf ("%d: ERROR: failed to unlock lock2\n", pthread_self ());
exit (1);

}

printf ("%d: Calls suceeded. Checking lock status\n",
pthread_self ());
if (kc_lock_locked (lockl))
{
printf ("%d: ERROR: lockl appeared to be locked\n",
pthread_self ());
exit (1);
}
if (kc_lock_locked (lock2))
{
printf ("%d: ERROR: lock2 appeared to be locked\n",
pthread_self ());
exit (1);
}
printf ("%d: Both locks appear unlocked\n", pthread_self ());
/*recursive lock taking? */
printf ("%d: Attempting to take lockl twice (recursively)\n",
pthread_self ());
if (kc_lock_mustlock (KC_LOCK_DEFAULT, lockl, NULL))
{
printf ("%d: ERROR: failed to lock lockl (standard locking)\n",
pthread_self ());
exit (1);
}
if (kc_lock_mustlock (KC_LOCK_RECURSIVE, lockl, NULL))
{
printf ("%d: ERROR: failed to lock lockl (recursively)\n",
pthread_self ());
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exit (1);

}
if (kc_lock_unlock (lock1l))
{
printf ("%d: ERROR: failed to unlock lockl\n", pthread_self ());
exit (1);
}

/*lockl should still be locked */
if (!'kc_lock_locked (lockl))

{
printf
("%d: ERROR:lock 1 appeared unlocked after the first release\n",
pthread_self ());
exit (1);
}
if (kc_lock_unlock (lockl))
{
printf ("%d: ERROR: failed to unlock locki\n", pthread_self ());
exit (1);
}
/*try to take lock twice without recursion */
/% printf("%d: Attempting to take lockl twice (without recursion)--THIS SHI

if (kc_lock_mustlock (KC_LOCK_DEFAULT,lock1,NULL)){
printf ("%d: ERROR: failed to lock lockl (standard locking)\n",pth:
exit(1);
}
if (kc_lock_mustlock (KC_LOCK_DEFAULT,lock1,NULL)){
printf("%d: ERROR: failed to lock lockl (standard locking)\n",pth:
exit(1);
}
printf ("%d: ERROR: taking lockl twice did not segfault\n",pthread_self()):
/*print success and exit */
printf ("Completed test\n");
}
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D lock_test_output

Results from the tests in lock_test.c. The number preceding each message is
the ID of the thread printing the statement.

16386: Attempting to take locks one and two seperately 16386: Calls succeeded, che
unlocked;
getting ready to
wait *x*
DEBUG **:
Reached
kc_lock_unlock *x*
DEBUG **:
Checked
to
make
sure
we
own
the
lock
Lock
count
is
2
in
call
to
kc_lock_unlock () **
DEBUG *3%*:
Reached
kc_lock_unlock *x*
DEBUG *3*:
Checked
to
make
sure
we
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own
the
lock
Lock
count
is

1

in
call
to

kc_lock_unlock () x*x
DEBUG *x*:Unlocked the lock
Completed test

49156:
49156:
49156:
49156:

Attempting to take locks one and two seperately
Calls succeeded, checking status of both locks
Both locks appear locked

Attempting to release locks one and two

** DEBUG **:Reached kc_lock_unlock
**x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to

kc_lock_

unlock () *x

DEBUG **:Unlocked the lock
*x DEBUG **:Reached kc_lock_unlock
**x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to

kc_lock_

unlock () *x

DEBUG *x*:Unlocked the lock

49156:
49156:
49156:
49156:
49156:
49156:

Calls succeeded, checking status of both locks
Both locks appear unlocked

Attempting to take locks one and two in one call
Call succeeded.Checking lock status

Both locks appear locked

Attempting to release locks one and two

*% DEBUG **:Reached kc_lock_unlock
**x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to

kc_lock_

unlock () *x*

DEBUG *x*:Unlocked the lock
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*x DEBUG **:Reached kc_lock_unlock
**x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to
kc_lock_unlock () *x*
DEBUG **:Unlocked the lock
49156:Calls suceeded.Checking lock status
49156:Both locks appear unlocked 49156:Attempting to take lockl
twice (recursively) *x
DEBUG **:The lock was not unlocked;
getting ready to wait
*x DEBUG **:Reached kc_lock_unlock
*x DEBUG **:Checked to make sure we own the lock
Lock count is 2 in call to kc_lock_unlock ()
*x DEBUG **:Reached kc_lock_unlock
*x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to kc_lock_unlock ()
*x DEBUG **:Unlocked the lock
Completed test
32771 :Attempting to take locks one and two seperately
32771:Calls succeeded, checking status of both locks
32771:Both locks appear locked
32771:Attempting to release locks one and two
*x DEBUG **:Reached kc_lock_unlock
**x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to kc_lock_unlock ()
*x DEBUG **:Unlocked the lock
*x DEBUG **:Reached kc_lock_unlock
**x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to kc_lock_unlock ()
*x DEBUG **:Unlocked the lock
32771:Calls succeeded, checking status of both locks
32771:Both locks appear unlocked
32771 :Attempting to take locks one and two in one call
32771:Call succeeded.Checking lock status
32771:Both locks appear locked
32771:Attempting to release locks one and two
*x DEBUG **:Reached kc_lock_unlock
*x DEBUG **:Checked to make sure we own the lock
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Lock count is 1 in call to kc_lock_unlock ()
**x DEBUG **:Unlocked the lock
*x DEBUG **:Reached kc_lock_unlock
*x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to kc_lock_unlock ()
*x DEBUG **:Unlocked the lock
32771:Calls suceeded.Checking lock status
32771:Both locks appear unlocked
32771:Attempting to take lockl twice (recursively)
*x DEBUG **:The lock was not unlocked;
getting ready to wait

*x DEBUG **:Reached kc_lock_unlock

**x DEBUG **:Checked to make sure we own the lock

Lock count is 2 in call to kc_lock_unlock ()
*x DEBUG **:Reached kc_lock_unlock
*x DEBUG **:Checked to make sure we own the lock
Lock count is 1 in call to kc_lock_unlock ()
**% DEBUG **:Unlocked the lock Completed test
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