
Development of a Deadlock-Detecting Resource Locking Algorithm for a Kernel Debugging User-space
API Library

Timothy Wismer 2004-2005
TJHSST Computer Systems Lab

Abstract
The kernel is the heart of an operating system; it is the program that is run when the
computer first boots up, and it is responsible for accessing the computer hardware
and performing other management tasks on behalf of all other programs. Because
of its importance, the Linux Kernel must perform perfectly; any vulnerability,
instability, or inefficiency will slow down or threaten the entire system.

Unfortunately, due to the nature of the program, kernel code cannot be easily
debugged. The kernel runs in an environment called kernel-space, which is
significantly different from the user-space environment in which ordinary programs
run. The kernel provides user-space as an abstraction to the running programs,
masking process scheduling, disk I/O, and so forth. Because the kernel expects to
run in kernel-space, it cannot run in userspace. In addition, if there is an error while
the kernel is running, it is difficult for the code to provide the tester with useful data
about the error (because the kernel itself is responsible for access to the hard drives
and monitor). The goal of the KDUAL project is to create a C library which
implements the kernel Application Programming Interface (API) in user-space and
performs automatic debugging. Sections of kernel code can then be compiled
against this library and run as ordinary programs for convenient testing.

This particular section of the project aims to implement the kernel's resource locking
API, providing the core resource-locking algorithms with debugging code which
will provide automatic detection, reporting, and resolution of deadlock situations,
thus catching subtle locking errors in early testing and production and easing later
debugging. Locking will be implemented in two parts--the core algorithms, with
their own API designed to be most convenient for use in development, and simple
wrapper code bridging that API to the kernel API. The core algorithms will also be
suitable for applications other than kernel programming, e.g. as a generic lock-
testing toolkit.

Hardware Layer
(ex: Matrox Millenium II Graphics Card)

Hardware Layer (ex: matroxfb_base.o driver)

Abstraction Layer (ex: framebuffer)

User-space
(ex: OpenGL Library)

Kernel-space

Separate Program Layers: Physical layer at the bottom, low-level hardware
interaction and convenient abstractions provided by the kernel, and user code

at the top. The middle layers will be implemented by KDUAL.

Locking and Deadlock
Resource-locking is essential for successful concurrency: having multiple separate
programs running simultaneously and working with the same resources---shared
data objects, I/O handles (e.g. sockets), physical devices (reading data from a floppy
disk), or any other resource which the processes cannot all use at once. In the
absence of locking, such programs would simply ''stomp'' on each other, accessing
the data simultaneously and potentially resulting in data corruption and program
failure. Consider a simple example: a number i shared by two programs, A and B.
At some time during execution, i is 0, and each program wants to access it: A wants
to set it to 3, and B wants to read its value for later use. If both processes access i
without coordination, A will succeed in setting the value, but the value B returns is
unpredictable. It may be 0 (if the read is completed before the write), 3 (if the write
is completed before the read), or some other garbage value (if the read is performed
while the write is occuring). To prevent an error situation, a process cannot safely
operate on the data until it ensures that no other process is operating on the data. To
achieve this, each resource is associated with a ''lock'' object. Generically, the lock
has two states: locked and unlocked. To use a resource, a process must first obtain
the associated lock. If the lock is currently in the unlocked state, the process can
take the lock and then proceed to manipulate the data as it pleases, returning the lock
to the unlocked state when it is done. If the lock is taken (because some other
process is using the resource), the current process must wait on the lock until it is
returned to the unlocked state (i.e. the resource is no longer in use). The process can
then take the lock as before and proceed to use the resource.

Deadlock occurs anytime a process cannot obtain the lock it is waiting for without
giving up a lock it already holds. For example, the most trivial case of deadlock
occurs when a process attempts to take a lock it already holds; each time the process
checks the lock, it is in the locked state, so the process will keep waiting. However,
it will never unlock the lock (since it is busy trying to lock it) and so will wait
forever. This locking implementation will therefore include built-in testing for
deadlock situations, vastly simplifying the debugging process and helping to
produce more reliable code. It will also provide other valuable debugging features,
e.g. status messages printed by certain segments of the locking code, which will help
developers isolate and correct problems.

The detection thread relies on a structure called a Wait-For-Graph (WFG), a
common concept in deadlock detection. The nodes of the WFG represent processes
in the system, and the (directed) edges of the graph are dependencies between
processes, where an edge i → j indicates that process i is waiting for a resource
currently held by j. If there is a deadlock, it will be detectable in the WFG as a
cycle: a complete path from any node back to itself. The definition of deadlock is
that the process is waiting on a resource that it cannot obtain without releasing a
resource it already holds; this will necessarly result in a cycle in the WFG, because
the process must (through some number of intermediaries) depend on itself. Thus
there must be some series of edges leaving from a node and pointing back to the
node. The reverse is also true: a cycle in the WFG always indicates a deadlock
situation: the cycle indidcates that the process ultimately depends on itself, meaning
that it is necessarily involved in deadlock and requires outside intervention. This
means that checking for cycles in a WFG will detect all deadlocks without
identifying non-deadlock situations as deadlocks (false positives); thus it is a reliable
method for detection.

2

1,3

3

2

A deadly embrace: process 2 wants the lock process 3
holds while process 3 wants the lock process 2 holds.
Process 1 wants process 2's lock, but is not part of the
deadlock.

1

2

3

The Wait-For Graph representing the lock situation
above. The deadlock appears as a cycle: a complete path
connecting nodes 2 and 3. This will be identified by the
Deadlock Detector, which can eliminate the deadlock.
Because node 1 is not in the cycle, it will not be affected
by the Deadlock Detector.

