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Abstract
The kernel is the heart of an operating system; it is the program that is run when the 
computer first boots up, and it is responsible for accessing the computer hardware 
and performing other management tasks on behalf of all other programs.  Because 
of its importance, the Linux Kernel must perform perfectly; any vulnerability, 
instability, or inefficiency will slow down or threaten the entire system. 

Unfortunately, due to the nature of the program, kernel code cannot be easily 
debugged.  The kernel runs in an environment called kernel-space, which is 
significantly different from the user-space environment in which ordinary programs 
run.  The kernel provides user-space as an abstraction to the running programs, 
masking process scheduling, disk I/O, and so forth.  Because the kernel expects to 
run in kernel-space, it cannot run in userspace.  In addition, if there is an error while 
the kernel is running, it is difficult for the code to provide the tester with useful data 
about the error (because the kernel itself is responsible for access to the hard drives 
and monitor).  The goal of the KDUAL project  is to create a C library which 
implements the kernel Application Programming Interface (API) in user-space and 
performs automatic debugging. Sections of kernel code can then be compiled 
against this library and run as ordinary programs for convenient testing.

This particular section of the project aims to implement the kernel's resource locking 
API, providing the core resource-locking algorithms with debugging code which 
will provide automatic detection, reporting, and resolution of deadlock situations, 
thus catching subtle locking errors in early testing and production and easing later 
debugging.  Locking will be implemented in two parts--the core algorithms, with 
their own API designed to be most convenient for use in development, and simple 
wrapper code bridging that API to the kernel API. The core algorithms will also be 
suitable for applications other than kernel programming, e.g. as a generic lock-
testing toolkit.
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Locking and Deadlock
Resource-locking is essential for successful concurrency: having multiple separate 
programs running simultaneously and working with the same resources---shared 
data objects, I/O handles (e.g. sockets), physical devices (reading data from a floppy 
disk), or any other resource which the processes cannot all use at once.  In the 
absence of locking, such programs would simply ''stomp'' on each other, accessing 
the data simultaneously and potentially resulting in data corruption and program 
failure.  Consider a simple example: a number i shared by two programs, A and B.  
At some time during execution, i is 0, and each program wants to access it: A wants 
to set it to 3, and B wants to read its value for later use.  If both processes access i 
without coordination, A will succeed in setting the value, but the value B returns is 
unpredictable.  It may be 0 (if the read is completed before the write), 3 (if the write 
is completed before the read), or some other garbage value (if the read is performed 
while the write is occuring).  To prevent an error situation, a process cannot safely 
operate on the data until it ensures that no other process is operating on the data.  To 
achieve this, each resource is associated with a ''lock'' object.  Generically, the lock 
has two states: locked and unlocked.  To use a resource, a process must first obtain 
the associated lock.  If the lock is currently in the unlocked state, the process can 
take the lock and then proceed to manipulate the data as it pleases, returning the lock 
to the unlocked state when it is done.  If the lock is taken (because some other 
process is using the resource), the current process must wait on the lock until it is 
returned to the unlocked state (i.e. the resource is no longer in use).  The process can 
then take the lock as before and proceed to use the resource.

Deadlock occurs anytime a process cannot obtain the lock it is waiting for without 
giving up a lock it already holds.  For example, the most trivial case of deadlock 
occurs when a process attempts to take a lock it already holds; each time the process 
checks the lock, it is in the locked state, so the process will keep waiting.  However, 
it will never unlock the lock (since it is busy trying to lock it) and so will wait 
forever.  This locking implementation will therefore include built-in testing for 
deadlock situations, vastly simplifying the debugging process and helping to 
produce more reliable code.  It will also provide other valuable debugging features, 
e.g. status messages printed by certain segments of the locking code, which will help 
developers isolate and correct problems.

The detection thread relies on a structure called a Wait-For-Graph (WFG), a 
common concept in deadlock detection.  The nodes of the WFG represent processes 
in the system, and the (directed) edges of the graph are dependencies between 
processes, where an edge i → j indicates that process i is waiting for a resource 
currently held by j.  If there is a deadlock, it will be detectable in the WFG as a 
cycle: a complete path from any node back to itself.  The definition of deadlock is 
that the process is waiting on a resource that it cannot obtain without releasing a 
resource it already holds; this will necessarly result in a cycle in the WFG, because 
the process must (through some number of intermediaries) depend on itself.  Thus 
there must be some series of edges leaving from a node and pointing back to the 
node.  The reverse is also true: a cycle in the WFG always indicates a deadlock 
situation: the cycle indidcates that the process ultimately depends on itself, meaning 
that it is necessarily involved in deadlock and requires outside intervention.  This 
means that checking for cycles in a WFG will detect all deadlocks without 
identifying non-deadlock situations as deadlocks (false positives); thus it is a reliable 
method for detection.

2

1,3

3

2

A deadly embrace: process 2 wants the lock process 3 
holds while process 3 wants the lock process 2 holds.  
Process 1 wants process 2's lock, but is not part of the 
deadlock.
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The Wait-For Graph representing the lock situation 
above.  The deadlock appears as a cycle: a complete path 
connecting nodes 2 and 3.  This will be identified by the 
Deadlock Detector, which can eliminate the deadlock.  
Because node 1 is not in the cycle, it will not be affected 
by the Deadlock Detector.


