Developing Algorithms for Computational
Comparative Diachronic Historical Linguistics

Dan Wright, Computer Systems Lab Research Project, 2005
May 24, 2005

Abstract

The purpose of my research was to design algorithms and techniques
which would aid in using computers to deal with languages, their relation-
ships to each other, and their changes over time. My method of research
is mostly thinking of ideas as to how to organize linguistic data or how
to use it to build information about the subject, for whatever purpose
anybody who might use my algorithms might have. My results are sev-
eral algorithms, data storage methods, and general insights reached about
the difficulties involved in dealing with historical linguistics on an algo-
rithmic basis. My algorithm development culminated in a complete and
functional algorithm for separating out related languages, which had some
interesting results regarding different aspects of phonemes.

1 Introduction

Historical Linguistics is a relatively new study. It only achieved an even slightly
scientific status in the 19th century, and its methods are typically unsystematic,
and often reliant on intuition. If it is to be used with any great degree of accuracy
and reliability, a systematic approach must be taken to historical linguistics
analysis, and the best way to do this is to develop algorithms for it. The
development of algorithms not only allows computers to do much of the rote
labor which historical linguistic analysis has much of, but also leads to a greater
understanding of the methods used.

I am aiming to develop algorithms for diachronic historical linguistics, mean-
ing that it will reconstruct the changes that have occurred in languages at vari-
ous points in time. This has no material benefit to anybody, but perhaps leads
us to a better understanding of history, literature, culture, and to some degree
language itself. I cannot predict what the algorithms I am attempting to cre-
ate might lead to, but my purpose is simply to allow computational analysis of
language change.

My specific and imminent material aim is to create a program that will,
given a group of languages in some form reflected nothing beyond their pho-
netic data (with semantic connections to organize), form a chronological and
familial hierarchy among them, discovering which grew out of which, and their
relations to each other. Ideally, this would also develop hypothetical ancestor
languages for each of these, placing these within the temporal hierarchy. Once
the hierarchy is in place, the ancestor languages can be honed to be more and
more likely and rigorously derived from their descendents, hopefully without
modification of the hierarchy already created. I plan to program in C, without
any object-oriented or input/output extravagancies.

2 Background Information and Theory

2.1 Phoneme Representation

Creating a phonetic representation system does not require a great deal of fore-
sight as to use, and does not affect the algorithms that use it much by its design,
other than in the realm of efficiency. A few integers will describe any phoneme,
and there are many phoneme description schemata to choose from. I personally
chose the most standard, that of the International Phonetic Alphabet. Once
one has categorized and schematized phonemes, they can be arrayed into words.
See Appendix A for a description of the phonetic categorization system I used.

2.2 Language Representation

Once one can store words, one can define a language. Morris Swadesh developed
a procedure of generating lists of words that will not be borrowed, and will
remain in a language only changed by phonetic phenomena. These are simple
words, used frequently in daily life. If one stores a phonetic description of
a Swadesh List of words, this defines a language at one point in time. This
snapshot of a language can be used to directly relate any language to any other
on purely phonetic grounds, escaping the traps inherent in keeping any semantic
basis. This also avoids using any connection to grammar, which is a far more
complicated subject and does not follow direct phonemic changes, unaffected by
other things.

2.3 Language over Time

If you can define a language at one point in time, you can define various lan-
guages at various points in time and link them, to create a fully temporal as well
as phonetically spatial language. It is feasible to represent dialect in this man-
ner, and make the language geographically spatial as well, but this is outside of
my intention.

It has been shown, beginning with people such as Jacob Grimm in the 19th
century, that languages, on some level, change by regular phonetic rules. These
rules are unaffected by semantics or other languages, and function randomly.
Their randomness is probably not pure, but the multitude of factors affecting
phonemic change are so complex that the result appears random, and can be
treated as such in analysis.

Most approaches to this have represented the various states of the language
in a tree. This does a good job of showing which languages have relationships
to each other, but does nothing to represent the nature of the relationships
themselves. My goal is to discover the actual sound changes which occur between
language states from the raw data, and using this information better determine
unknown states of the language.

2.4 Problems and Simplifications

There are various problems which make determination of sound changes diffi-
cult, and simplifications which remove these problems, though also lowering the
accuracy of the conclusions.

2.4.1 Borrowing

I aim to analyze the regular phonetic changes between states of a language.
However, not all language change occurs because of regular phonetic changes.
Therefore, I must only use word that are not subject to borrowing, and only
subject to regular phonetic change. There are lists of words in a language
known as Swadesh lists which are never borrowed, due to their fundamental and
common use. In only using these words, I can avoid the problem of borrowing,
with no significant loss of accuracy in conclusions drawn.

2.4.2 Polymorphism

In many languages, there are various phonetic forms of the same semantic form,
i.e. synonyms. With these, typically only one will be phonetically related to
those in previous languages. When assembling the list of words to use, it then
becomes necessary to choose the word form cognate with the other word forms I
am using. I can see no way to get around manually checking every list of words
for non-cognate synonyms. This can be circumvented, but at a cost in speed.

2.4.3 Dependent Evolution

The base assumption of my model of regular phonetic change is that sound
changes are regular and independent. A problem is that occasionally sound
changes, by changing the allocation of mouth space for various phonemes, can
cause other sound changes. Initially, I will simply assume all sound changes
are random. I may work in frequently-occuring dependencies in making my

algorithms more efficient. If possible, I will use dependency in determining the
likelihood of various sound changes, and therefore most likely past language
states.

2.4.4 Homoplasy

When a phoneme undergoes a sound change, in some cases it will be changed
into a phoneme that already exists. E.g., /b/ is devoiced to /p/, but the /p/
phoneme already exists and is unchanged. I do not plan to eliminate homoplasy,
and will definitely keep it as a possibility when analyzing sound changes from
raw data. I will also attempt to predict homoplasy when formulating past states.

3 Design Criteria

I approached the problem of designing the complete system from both ends.

My first work involved finding ways to categorize phonemes, and store them,
then work up from this to storage of words in Swadesh lists. This would be
required for all work dealing with languages, whether over time or simply syn-
chronic.

My nextt attempts were to develop algorithms to, given phonetic data of
languages, find the connections between them, and the regular sound changes.
This was successful in one way, but led to a dead end in another. I was able
to develop algorithms to find the connections, but I found these connections
useless. Sound changes do not follow linearly in the paths of those preceding
them, and there is no such things as phonetic momentum. Simple similarity
judgments proved more useful than sound changes. However, these algorithms
may serve a purpose in some other aspect of historical linguistics, so my working
on them was not a complete waste, they simply ended up being something of a
tangent to my main effort.

My third, and most actually significant effort, were my attempts to work
from the top down. I would simply, given languages, form a hierarchical web.
I began by simply organizing them by similarity, and discovered that organiza-
tional processes, if handled correctly, would actually serve to find hypothetical
ancestor languages.

3.1 Phoneme Storage

I designed a phoneme storage system described in Appendix A. To store a
single phoneme, a 5-dimensional array of integers is needed. I basically used
the guidelines of the International Phonetic Alphabet, but found a way to not
separate vowels from consonants. I did not include clicks or other weird sounds,
but my method of storage could easily be adapted to them. Essentially, there
is a series of arrays within arrays describing the various dimensions through

which phonemes can be classified. However, each level means a different thing
depending on which section of the array you are in. In the consonants, the
second dimension is voice, but in vowels this is not needed, so rounding is used
there. This provides for a maximum efficiency of space, and an ease of access,
balancing well memory and processing usage. This phoneme storage system can
be applied to anything.

Word storage involves simply making an array, or linked list, or some other
linear structure of phonemes. A Swadesh list can simply be an array of words
in which each position in the array corresponds to a single meaning.

The phonetic categorization and storage system was my most concrete achieve-
ment.

3.2 Correspondence
3.2.1 Brute Correspondence Algorithm

This algorithm, the only one I have fully implemented, is very simple and in-
effecient, but is a beginning. I go through two word-lists representing states
of a language and find every case in which one phoneme in one corresponds to
another in the other. When a correspondence occurs in all cases, it is recorded.
These correspondences are the most simply sound changes, and can be used to
analyze other sound changes. This algorithm is a necessary first step to ana-
lyzing the differences between two languages, though horribly inefficient. It is
unpleasant, but cannot be avoided.

3.2.2 Limited Correspondence Algorithm

This is a refinement of the Brute Correspondence Algorithm. In this, I first limit
my list of phonemes to go through. I can do it either for those that occur in the
first list, in both lists, or to some pre-existent list of phonemes for the language.
This is somewhat dangerous, as it brings about a possibility of missing really
peculiar changes, but it is much, much faster than just going through everything.

3.2.3 Abstract from Correspondences Algorithm

In this, I go through the sound changes discovered by either of the above algo-
rithms, and by a brute search find regularities, constant shifts between phoneme
types. Again, this is brute force, but refinements can be added later to make it
more efficient.

3.3 Web Formation
3.3.1 Web Formation Algorithm

The Web Formation Algorithm will act on a ”Family.” The first Family will be
formed of all of the languages and a proto-language formed from all of them via

an Ancestration Function. A Family has a parent, the proto-language, and any
number of children, which are either languages or Families. At the beginning
of the WFA, the Family has no proto-language, and the WFA forms it through
an Ancestration Algorithm. The Web Formation Algorithm will take a random
language, and find all of the languages which it is closer to (by some Distance
Function, which I will discuss later) than it is to the proto-language. These are
put into their own family, which is made a subfamily of the original family. This
is done until either every language is closer to the proto-language than anything
else, or all language are in Families. Then, the Web Formation Algorithm is
applied to every Family within this Family. Eventually, there will be a web of
connected families, culminating in leaf families whose only member is a single
language.

The code for my full web formation program (with equal aspect weighting)
can be found in Appendix C.

3.3.2 Ancestration Algorithm

This creates a proto-language from all of the languages which descend from it.
For the abstract number languages, I've simply used averaging. This would be
where the phonetic data comes in, and this would be one of the only places
where abstract number-languages differ from actual phonetic data. It is hypo-
thetically possible to only need a distance function and not a separate ances-
traction function by having the ancestration function act by creating random
languages and slowly working them closer in distance to the original languages,
but this would be monstrously inefficient and could be greatly helped by use of
phonetic knowledge.

3.3.3 Distance Function

The Distance Function is used within the WFA. It is what makes use of the infor-
mation built up through the Correspondence Algorithms. Simply by changing
the Distance Function, the Web Formation process I describe here can be ap-
plied to many things. For testing, I mostly used abstract number-lists, and
applied it to languages at the end.

4 Procedure

I ran several tests of my algorithms on various words in various languages.
The exact results of my test can be found in Appendix B. I did two tests on
random sets of words, when I was unable to find a reliable and complete source
of phonetic data. Once my planned source was available, I did several tests on
word banks in six languages: English, German, Portuguese, Dutch, Romanian,
Danish, Scots Gaelic, Polish. Polish and Scots were great outliers in many of the
cases, so I removed Polish in all but one and Scots in one. They were difficult

to phonetically map, and mapping in general showed itself to perhaps be the
greatest difficulty in my endeavor.

I ran my web-formation algorithms with two different distance functions,
one in which all phoneme aspects were weighted equally and one with stronger
weighting on more important aspects of a phoneme. For each test, I ran a single
iteration on the group of words, and recorded which languages were separated
out from each other for each word. This kept it simple, so problems could be
easily diagnosed. The complete results of my testing can be found in Appendix
B. The "Word Bank” words are reliable enough data for analysis.

Each word was converted into a series of integers using my phonetic classi-
fication system (see Appendix A). Then, the web-formation algorithm was run
on the lists of integers.

5 Discussion

I did not succeed in unifying all of my efforts, due to the overwhelmingly large
scope of historical linguistic issues, but I did make significant progress in from
both ends of the general problem. My phonetic classification system can be
applied, and something like it will be necessary, in any effort actually using
linguistic data in any way. Simply put, traditional alphabetic systems will not
function, and an organized multi-dimensional method is far more efficient, in
space and time, than a linear storage. My correspondence algorithms were gen-
erally uninteresting and on the whole not very useful. These were certainly the
weak point of my work this year. My web formation algorithms were probably
the strong point this year. I examined how to deal with languages (through fam-
ily relations) and developed methods that will, with further application, yield
actual information about language change. By experimenting with various dis-
tance algorithms within my framework, and testing the accuracy of these with
regard to actual historical data gleaned through writings and extensive manual
language derivation that has been done in the past, one could see how these mod-
els would correspond to the actuality of language change. My web-formation
algorithms are a useful framework for historical linguistic experimentation and
theorization, as the field has in the past been limited to purely historical studies.

6 Results

With the equally-weighted distance function, approximately half of the tests
were failures, not separating out any languages whatsoever. There was one
complete absolute success, in which the Germanic languages for "Horn” were
separated from the rest. With Sun, there was a general success, but not perfec-
tion.

The adjusted weight distance function always separated out the extreme

outliers, and had one perfect separation (the Germanic languages for ”come”)
and one near-perfect separation (Portuguese and Romanian for ”liver”).

Neither ever gave any grossly wrong answers, irreparably separating closely
grouped languages. Both weighting systems were equally effective. The Ger-
manic languages were far more coherent than the Romance, and the outliers
never cohered to each other.

7 Conclusion

My web-formation algorithm provides a good, somewhat reliable and effective
tool to separate out related languages from the unrelated. Applying several
distance functions with different weighting systems, and combining the results
of all of these results in increasing degrees of correctness. Further iterations
are as successful as earlier. My web-formation algorithms, using my phoneme
classification system, can separate languages given words. By combining more
and more results, on different words and with different weights, an extremely
accurate portrait of a language-web can be formed. An interesting result I
discovered is that language change does not regularly affect any aspect of a
phoneme more than any other.

8 References

Sedgewick, Robert. Algorithms in C, Part 5: Graph Algorithms. 2002. Addison-
Wesley. Boston, Massachusetts.

Kanna, S., Warnow, T. A Fast Algorithm for the Computation and Dnu-
meration of Perfect Phylogenies. 1996.

Warnow, T., Nakhleh, L., Ringe, D., Evans, S. A Comparison of Phylogenetic
Reconstruction Methods on an IE Dataset.

Warnow, T., Nakhleh, L., Ringe, D., Evans, S. Stochastic Models of Lan-
guage Evolution and an Application to the Indo-European Family of Languages.

9 Appendix A

My phoneme categorization system uses five integers to define a phoneme. Each
phoneme is stored as an array of five integers, but could easily be converted into
a more compact binary format, due to the limits on each integer. The first
integer can only be within a range of 0 to 1, the second is also 0 to 1, the third
is 0 to 11, the fourth is 0 to 7, and the fifth is once more 0 to 1, only used for
vowels.

The first integer declares whether the phoneme is a consonant or a vowel. A
value of 0 is a consonant, a value of 1 is a vowel.

The four other integers are differently used for consonants and vowels. The
consonant system uses only three of the integers, and the vowel system has
smaller ranges for the four integers it uses.

The consonant system begins with a 0 or 1 for voice. If 1, the phoneme is
voiced. The third integer defines Place of Articulation. 0 is bilabial, 1 labio-
dental, 2 spans dental, alveolar and postalveolar in situations where they are
undifferentiated, 3 is dental, 4 alveolar, 5 postalveolar, 6 retroflex, 7 palatal,
8 velar, 9 uvular, 10 pharyngeal, and 11 glottal. The fourth integer defines
Method of Articulation. 0 is plosive, 1 nasal, 2 trill, 3 tap (or flap), 4 fricative,
5 lateral fricative, 6 approximant, 7 lateral approximant.

The vowel system also begins with a 0 or 1, but for roundedness rather than
voice. The second integer defines openness of the vowel: 0 is close, 1 close-mid, 2
open-mid, and 3 open. The third integer defines Frontness: 0 is back, 1 central,
2 front. The fourth integer defines offset, which is for phonemes very close to
another phoneme and differentiated in various directions, but not so different
in any so as to be classified differently. The phoneme which less completely fits
the phonemic classification is offset.

10 Appendix B

Testing Data:

Fly

Languages: English, German, Romanian, Latin, French, Greek Fly, fliegen,
bura, volar, voler, peto,

Separated out Greek, German, and Romanian from English, Latin, and
French The 1 was present in the separated languages, which seemed the key fac-
tor. The gapping of the lack of vowel in English and German also seemed key.
With English and German consonant-expanded rather than vowel-expanded,
Greek and Romanian only were separated out. This is probably better.

Hand

Languages: English, German, Italian, French, Greek, Dutch Hand, Hand,
mano, mano, cheri, hand Did not separate at all.

Word Bank Languages: English, German,Portuguese, Dutch, Romanian,
Danish, Scots Gaelic, Polish. Polish was usually not phonetically mappable to
other languages, so it was removed in almost all cases.

Words: Horn, Mouth, Liver, Come, Sun, Moon

Horn

Equal Weight: English, German, Dutch and Danish were kept in, and the
rest were separated out. Worked perfectly.

Adjusted Weight: Separated out Polish alone.

Mouth

Equal Weight: All of the languages were separated out as aberrant and
unrelated. A failure.

Adjusted Weight: Separated out English alone.

Liver

Equal Weight: All of the languages were separated out as aberrant and
unrelated. A failure.

Adjusted Weight: Separated out Portuguese and Romanian. Very effective,
very correct.

Come

Equal Weight: Separated out the Scots from the rest, which though not
terribly informative is correct.

Adjusted Weight: Separated out English, German, Dutch, and Danish. Ab-
solute perfection.

Sun

Equal Weight: Separated out Portuguese, Romanian, and Danish. Once
again, not perfect, but of good quality.

Adjusted Weight: Separated out Scots and Dutch. Imperfect, completely
acceptable quality.

Moon

Equal Weight: Separated out Scots, and separated out Portuguese with Scots
removed. Scots was removed because it was an intense outlier in this case, not
at all phonetically mappable.

Adjusted Weight: Separated out Romanian with Scots removed. Not espe-
cially informative.

11 Appendix C: Web Formation Code

#include<stdio.h>
#include<malloc.h>

void printlist(int* list);

void familyoutput (int** family);

int** newfamblank();

int** newfam(int* firstlist);

int** addtofam(int** family, int* list);

int** addfamtofam(int** family, int** newFam) ;

int* ancestor(int* lista, int* listb, int weighta, int weightb);

int** familiate(int** family)

{

int n = family[0] [0];
if(n < 2)

return family;

int x = 0;

int y = 0;

10

int newfirst = 0;

int newfamcount = 0;

int* toswitch = (int*)malloc(sizeof(int) * (n+1));
for(x = 0; x <= n; x++)

toswitch[x] = 0;

for(x = 2; x <= n; x++)

if (family[0] [x] == 0)

newfirst = x;

if (newfirst == 0)

return family;

//printf ("Length: %d, %d\n", family[0][0], n);
//printf ("Newfirst: J%d\n", newfirst);
//familyoutput (family) ;

int* newanc = (int*)malloc(sizeof(int) * 11);
newanc[0] = 11;

for(x = 1; x <= n; x++)

{

if (family[0] [x] == 0)

newanc = family[x];

}

int newedin = O;

for(x = 1; x <= n; x++)

{

//printf ("’Bout to ancestrate, %d\n", family[0][x]);
if (family[0] [x] == 0)

{

newanc = ancestor(newanc,family[x],newedin,1);
newedint++;

}

//printf ("Ancestrated.\n");

}

int newnewfirst = newfirst;

for(x = 1; x <= n; x++)

if (family[0] [x] == 0){

if (distance(newanc,family[x])

>= distance(family[x],family [newfirst])){
toswitch([x] = 1;

newnewfirst = x;

newfamcount++;

//printf("}d is within distance.\n", x);

}

else { //printf("%d is not within distance.\n", x);

11

//printf ("Distance from anc: %d\n", distance(newanc,family[x]));
//printf ("Distance from new: %d\n",
//distance(family[x],family[newfirst]));

}

}

int** newFam = newfamblank() ;

//printf ("The first.\n");

//familyoutput (newFam) ;

//Create new subfamily if there is omne, put it in
if (newfamcount > 0){

int** subFam = newfam(family[newnewfirst]);
for(x = 1; x <= n; x++)

if (toswitch[x] == && x !'= newnewfirst)
subFam = addtofam(subFam,family[x]);
//printf ("The subfam.\n");

//familyoutput (subFam) ;

newFam = addfamtofam(newFam,subFam) ;
//familyoutput (newFam) ;

}

//Add in unswitched lists

for(x = 1; x <= n; x++)

{

if (family[0] [x] == 0){

if (toswitch[x] == 0){

newFam = addtofam(newFam,family[x]);
//printf ("Added a list.\n");

}

}

//else

//newFam = addfamtofam(newFam, (int**)family[x]);
}

//familyoutput (newFam) ;

return newFam;

}

int** newfamblank()

{

int** toRet = (int**)malloc(sizeof(int*) * 1);
toRet[0] = (int*)malloc(sizeof(int) * 1);
toRet [0] [0] = O;

return toRet;

12

3

int** newfam(int* firstlist)

{

int** toRet = (int**)malloc(sizeof (intx*) * 2);
toRet [0] = (int*)malloc(sizeof(int) * 2);
toRet[0] [0] = 1;

toRet [0] [1] = O;

toRet[1] = firstlist;

return toRet;

3

int** addtofam(int** family, int* list)

{

int curLen = family[0] [0];

int** newFam = (int**)malloc(sizeof (int*) * (curlLen + 2));
int* newIndex = (int*)malloc(sizeof(int) * (curlLen + 2));

newlIndex[0] = curlen + 1;
int x;

for(x = 1; x <= curlen; x++)
{

newIndex[x] = family[0] [x];
newFam[x] = family[x];

}

newFam[curLen + 1] = list;
newIndex[curlLen + 1] = 0;
newFam[0] = newlIndex;
return newFam;

}

int** addfamtofam(int** family, int** newFam)

{

int curlLen = family[0] [0];

int** toRet = (int**)malloc(sizeof(int*) * (curlLen + 2));
int* newIndex = (int*)malloc(sizeof(int) * (curLen + 2));
newIndex[0] = curlen + 1;

int x;

for(x = 1; x <= curlen; x++)

{

newIndex[x] = family[0] [x];

toRet [x] = family[x];

}
toRet[curlLen + 1] = (int*)newFam;
newlIndex[curlLen + 1] = 1;

13

toRet [0] = newIndex;
return toRet;

}

//A simple family will consist entirely of languages.
void familyoutput (int** family)

{

//printf("I’ve been called to output!\n");
printf ("<<<<<<<<\n");

int len = family[0][0];

printf ("%d\n", len);

int x = 0;

for(x = 1; x <= len; x++)

{

if (family [0] [x] == 1){

//printf ("Subfamily:\n");

familyoutput ((int**)family[x]);

}

else

printlist(family[x]);

}

printf (">>>>>>>>\n");

3

int* inlist(FILE* inFile)

{

int newlen, x;

fscanf (inFile, "%d", &newlen);
//printf ("Firstlen: %d\n", newlen);
int* toRet = (int*)malloc(sizeof(int) * (newlen + 1));
for(x = 0; x < newlen; x++){
fscanf (inFile, "%d", &toRet[x+1]);
//printf ("%d\n", toRet[x+1]);

}

toRet[0] = newlen;

return toRet;

}

void printlist(int* list)

{

int x = 0;

printf("%d: ", list[0]);
for(x = 1; x <= 1list[0]; x++)
printf("%d ", list[x]);

14

printf("\n");
}

int distance(int* lista, int* listb)

{

//printf ("About to Distance!\n");

int len = listal[0];

//printf ("List A doesn’t explode!\n");
if (1istb[0] < len)

len = listb[0];

//printf("List B doesn’t explode!\n");
int x = 0;

int dif = O;

double avg = O;

for(x = 1; x <= len; x++)

{

dif = listb[x] - listalx];
if (dif < 0)

dif *= -1;

avg += (double)dif/len;

}

//printf ("Distanced!\n");
return (int)avg;

}

int* ancestor(int* lista, int* listb, int weighta, int weightb)
{

int lenn = listal0];

if (1istb[0] > lenn)

lenn = listb[0];

//printf ("Len: %d\n", lenn);

int* listn = (int*)malloc(sizeof(int) * (lenn + 1));

int x = 0;

int newval = 0, tempa = 0, tempb = O;
for(x = 1; x <= lenn; x++)
{

newval = O;

tempa = weighta;

tempb = weightb;

if (listal[0] >= x)

newval += listal[x] * tempa;
else

tempa = 0;

15

if (1istb[0] >= x)

newval += listb[x] * tempb;

else

tempb = 0;

newval = newval/(tempa + tempb);
listn[x] = newval;

//printf ("Newval %d: %d\n", x, newval);
}

listn[0] = lenn;

return listn;

3

int** newinput (FILE* inFile)

{

int newlen, x;

fscanf (inFile, "%d", &newlen);

int**x toRet = (int**)malloc(sizeof (int*) * (newlen + 1));
toRet[0] = (int*)malloc(sizeof(int) * (newlen + 1));
for(x = 1; x <= newlen; x++){

toRet[x] = inlist(inFile);

toRet [0] [x] = O;

}

toRet [0] [0] = newlen;

return toRet;

}

int main()

{

FILE* inFile = fopen("temp.web", "r");

//FILE* inFileA = fopen("a.web", "r");

//FILE* inFileB = fopen("test.web", "r");

//int* lista = inlist(inFileA);

//int* listb = inlist(inFileB);

//printf ("A:\n");

//printlist(lista);

//printf ("B:\n");

//printlist(listb);

//int* listc = ancestor(lista, listb, 1, 1);
//printf("C:\n");

//printlist(listc);

//printf ("Distance A-B: ’/d\n", distance(lista,listb));
//printf ("Distance A-C: %d\n", distance(lista,listc));
//printf ("Distance B-C: %d\n", distance(listb,listc));
//Dealing with families now.

16

int x;

/*int** family = (int**)malloc(sizeof (int*) * 4);
family[0] = (int*)malloc(sizeof(int) * 4);
family[0] [0] = 3;

for(x = 1; x <= family[0][0]; x++)

family[0] [x] = O;

family[1] = listc;

family[2] = lista;
family[3] = listb;
familyoutput (family) ;

familiate(family) ;

//familyoutput (family) ;*/

//int** family = newfam(listc);
//family = addtofam(family,lista);
//family = addtofam(family,listb);
//printf ("About to familiate.\n");
int** family = newinput(inFile);
family = familiate(family);

//family = familiate(family);
//printf ("OHMYGODITWORKS\n") ;
familyoutput (family) ;

return O;

}

17

