
Development of a Automated Mechanical
Receptionist

Paul Chung
Thomas Jefferson High School for Science And Technology

Alexandria, Va

January 25, 2006



Abstract

The main objective of this project is to continue development of a robotic
receptionist for NRL (Naval Research Laboratory). This will involve adjust-
ing the robot’s AI code to be more fitting to NRL and adding features in-
volving a card reader. The AI code was originally programmed for Carnegie
Mellon University and needs to be adapted in its algorithms for providing
directions and responses to users. The card reader program also needs to be
modified so that the robot will be able to identify users through an id card.
Users will also be able to start up and shutdown demonstrations automati-
cally by swiping certain cards for a set number of times.

The adaptation of the AI code will mainly involve C++ and IPC. IPC
(inter-process communications) will allow the process that interprets user in-
put to communicate with other programs running on the robot. Ensuring
that the robot interprets requests for general information, directions, and
people correctly is a critical part of the project. The requests must then be
transferred to the appropriate algorithm, which will provide the response.
The card reader program will also use MD5 sums to identify different id
cards. MD5 sums, which are different codes assigned to cards, are used
to differentiate cards that are authorized and known from unknown cards.
The program identifies users based on the MD5 sums stored in a database
and uses IPC to let the robot’s AI know who the user is. A process man-
agement application, Microraptor, will also be used by the card reader to
facilitate the automatic startup and shutdown of demonstrations. When a
user swipes a certain card for a set number of times, the Microraptor central
server will startup programs required to run a certain demonstration. The
process management application is necessary to make sure the dependencies
of the programs are running and to monitor the status of all of the running
processes.



Introduction

The purpose of this project is to adapt a robotic receptionist for NRL and

to add features to the currently existing robot and artificial intelligence.

Adapting the receptionist mainly involves reprogramming some of the code

that handles giving directions and determining responses. The problems

with the current receptionist are primarily caused by the originial artificial

intelligence, which was programmed for Carnegie Mellon University. When

retrieving directions, the receptionist will sometimes give directions to build-

ings located in CMU. Also, the receptionist greets users as if it were at the

campus instead of NRL. There are also some other issues with parsing data

from databases that is used to find information about specific people.

Additional features will involve the card reader. One aspect of this goal

is to have the receptionist recognize users based on what card they swipe.

Currently, the robot can only recognize when a card has been swiped and

whether it has been registered before. Another feature that will be added

using the card reader will be the automatic startup and shutdown of robot

demonstrations. This is somewhat functional in a specific demonstration in

that a user can utilize a process management application to run the programs

with only one command. There are, however, several other demonstrations

that require significant experitse and time in order to run. The automatic

startup and shutdown also needs to be run with only a swipe of a card rather

than manually entering the process management application and starting the

1



demonstration.

Adapting the receptionist for NRL will give it more functionality. Once

the artificial intelligence is reprogrammed, visitors and other users at NRL

will be able to find directions and people easily by asking the receptionist.

The automatic startup and shutdown will also save significant time and ef-

fort in setting up the demonstrations. The manual method of running the

demonstrations requires several hours and knowledge of all of the processes

dependencies and environment variables, but the automatic startup will run

the demonstrations with a simple card swipe.

Background

The robotic receptionist was programmed to be able to have basic conver-

sations with users as well as direct visitors to certain buildings, rooms, or

people. Determining what kind of response the robot should give was based

on recognizing certain words and ascertaining the nature of the user’s input.

If it was determined that the user was asking for the location of a building,

room or person, the robot would query certain databases to acquire the re-

quested information. This process involved several different programs that

utilized IPC to commmunicate between them. One process, named inter-

act, would parse the user input and if the user needed directions, it would

request directions from another program (named giveDirectionsNRL) that

would search a database. In the case that the user was looking for a person,

2



the program would query a database and return the such information as the

name, phone number, and the room and building of the person.

The card reader was also previously implemented into the robot, but the

receptionist could only detect when a card was swiped and whether it was an

“authorized” card. An authorized card was one that was stored in a list that

contained an MD5 sum associated to the card and the id of the user with

that card. The MD5 sum was obtained from reading the magnetic stripe on

cards such as calling or credit cards using a separate program that stored

the sums into a list. The card reader program implemented into the rest of

the receptionist programming code waited for a card to be swiped, read the

MD5 sum from the card and compared it to the ones stored in the file of

authorized cards. Using IPC, it communicated with the other programs to

let the user know through the interface that a card was swiped and whether

it was authorized or not.

The automation of the startup and shutdown sequence was already some-

what functional in one demonstration. This demonstration was called Mal-

orie and had basic user input through a keyboard. It was limited to giving

responses through a monitor and speakers rather than including movement.

The processes used by Malorie were listed in a file along with their dependen-

cies, environment variables, directory location and other necessary informa-

tion. This file was read by a process management application, microraptor,

that could run and stop all the processes with one command. Using micro-

raptor made monitoring the processes much easier and starting and stopping

3



the processes involved less expertise with the dependencies and environment

of each program.

Development

The first aspect of this project was adapting the AI for one of the robotic

receptionists, Malorie. Research of how the AI determined its responses was

required in order to solve the problems of Malorie giving incorrect directions

and greetings. Once the setup of the AI was researched, solving the issues

was a matter of localizing the source of the problems and studying specific

programs in detail. (Appendix A contains some details about this aspect of

the project).

A crucial part of the Malorie robot receptionist was IPC. This was used

to allow the several programs that formed Malorie’s AI to communicate with

each other. The passing of data from certain processes to others is diagramed

below:

4



The program that handled user input through a keyboard was called tex-

tinput. Textinput passed the user input to Malorie’s main AI module, named

interact. Interact interpreted the user’s input and whether the user wanted

directions, information about people, or wanted to have a conversation. The

first two cases were not actually distinguished in interact’s interpretation

methods but in either case the input was passed to another program called

giveDirectionsNRL.

The process giveDirectionsNRL used different methods of retrieving in-

formation for requests for people and for locations. If the user asked for the

whereabouts of a person, the program used the system command to query a

NRL database that contained the requested information. The command was

whois -h whois.nrl.navy.mil name ¿ filename and its output was a file that

contained either no names, one name with associated room number, phone

number, e-mail, and so on, or multiple names with a few items of informa-

tion. A few errors with Malorie giving incorrect responses to input regarding

people were caused by parsing errors in this program. giveDirectionsNRL

misread the output file from the whois command and sometimes gave in-

correct information or claimed there were multiple people at NRL with a

name that actually was not in the database. These problems were solved by

rewritting the parsing code to more accurately interpret the output file and

determine if there was one, multiple or no names found that matched the

user query.

In the case that the user needed directions, giveDirectionsNRL searched

5



a text file containing specific building names, called buildingNames.txt. If

the user input included a name included in the file, giveDirectionsNRL ob-

tained a building code associated with the name. It then used the code to

find the directions, which were prewritten in a header file, buildingDefines.h.

The problem caused by this algorithm was that it sometimes gave incorrect

directions. One cause was that the directions were not rewritten for NRL in

the bulidingDefines.h file. Another cause was that the algorithm returned a

default building code if the user requested the location of a building that was

not stored in buildingNames.txt. The default building code was associated

to a building in CMU, Newell Simon Hall. Problems that resulted from the

first cause were solved by rewritting the directions. The second cause was

fixed by changing the default building code to one that was associated to the

visitors center at NRL and informing the user when the building requested

for was not found.

There were otherer problems with Malorie’s AI that caused it to greet

users as a receptionist for CMU and occasionally do monlogues written by

the drama department at CMU. Both of these problems were caused by the

interact program. The first issue was caused by interact loading an old script

file used for the receptionist at CMU. The sciprt file had prewritten greetings

and responses that were loaded by interact. At first, interact loaded the

correct script file but then, as it called a function named initializeExpression,

it loaded the incorrect file. The monologues could also be turned off by

simply changing a boolean in interact called doMonologues. While compiling

6



the code, however, there was an issue with tdl (task description language)

libraries, which were needed for IPC. Interact could thus not be compiled

and the issue was unresolved.

The next aspect of the project was adding a feature to the card reader

that would enable Malorie to recognize a user based on a card. The card

reader was already implemented into the robot with the program entitled

cardreader. This program waited for a card to be swiped, obtained its MD5

sum and compared it to ones previously stored in a file (authfile) that con-

tained a list of authorized cards and the users associated with them. The

cardreader program could already recognize the user but there was no way

for the other modules of Malorie’s AI to know who the user was through the

card. This was solved by adding an IPC message that would be sent out by

cardreader to textinput. The message would say ”my name is ¡user name¿”

with the user name being the one stored in authfile. Textinput would then

pass the message to interact and it would react as if the user had typed in

his name in the keyboard.

The last aspect of the project was automating the startup and shutdown

of Malorie and robot demonstrations. The goal was to allow a user to swipe a

card once to startup a demonstration and swipe the same card twice to shut

it down. This utilized microraptor to run the processes in order according

to their dependencies and shut them down quickly. A method of associating

certain cards with commands was created that was implemented into the

cardreadper program. The method involved a file of entries with each entry

7



specifying a user id, number of card swipes, and a list of commands to be

executed when the card with the specified id had been swiped the necessary

number of times. This file was read at the startup of the cardreader program

and the entries were stored in a vector.

The cardreader program was also adapted to be a stand alone program

that could be used with any robot demonstration. This involved removing

the IPC commands that would attempt to contact other processes that were

contained in Malorie’s AI. A method of counting consecutive card swipes

also needed to be added to cardreader. This was done by utilizing signals so

that a signal would be sent at the end of a period of time after the previous

card swipe. The signal would be caught in a fucntion that would search the

vecotr of stored entries for a matching user id and number of card swipes. If

a matching entry was found, the commands associated with that entry were

executed using the system command.

To use the entry feature of the card reader to automatically start and stop

demonstrations, mrterm was necessary. Mrterm is a text based interface to

microraptor, which runs as a daemon. Argument can be passed to mrterm,

which will then be passed as commands to the daemon. This is ideal for the

card reader feature since the command to run or kill all of the processes of a

demonstration can be passed to the daemon in a system command. Appendix

B contains the automatic startup and shutdown method description and

details on the entry file for the card reader.

8



Results

Most of the goals were met in the first aspect of the project. Malorie now

correctly gives directions to buildings inside NRL with the rewritten direc-

tions in buildingDefines.h. It also recognizes when requested buildings are

missing from the header file. When retrieving information about people,

Malorie correctly interprets the output file from the whois command and can

identify when there is multiple or no matches of the name requested. The

only remaining issue is that interact still causes Malorie to load the wrong

script file and engage in extraneous monologues.

The additional card reader feature of recognizing users based on cards is

functional with only a few problems. If the user repeatedly swipes a card,

Malorie will respond as if the user typed it into the keyboard several times.

The response will be along the lines of, ”you already said that” when the

user technically hasn’t put any input at all. There is, however, a built in

timer that pauses the detection of cards after a swipe. Thus this glitch

would require a user to swipe his card repeatedly over several seconds. Also

if textinput isn’t running, Malorie will be unable to identify the user since

cardreader needs to communicate with textinput.

The automatic startup and shutdown of demonstrations is also functional

with problems caused by flaws in the demonstrations rather and microraptor

rather than the method itself. The version of microraptor that runs on the

robots is outdated and has several glitches (i.e. does not properly terminate

9



processes, causes some processes to become defunct). Some of the programs

in the demonstrations are also not fully functional or need to be running for

a certain amount of time before its dependents can be run. Since micro-

raptor will run depedent programs immediately after their dependencies are

running, this can cause issues. That problem, however, can be resolved by

inserting sleep commands in the entry read by the cardreader program.

Conclusion

Most of the project’s problems were solved and goals achieved. Further

research into tdl may lead to a solution of the last problems with Malorie’s

AI and also prevent compiling issues in the future. Updating microraptor

on the robot could also be a future goal, since that would solve some issues

inherent to the older version.

Appendices

\textbf{Appendix A}

Fixes:

- Giving directions to CMU’s Newell-Simon Hall when giving directions to another NRL building.

This happened when the building being requested was not listed in malorie’s directory (challenge/src/tasks/give_directions_nrl/buildingDefines.h). The getRequestType funciton in directions.cc (in the same directory as buildingDefines.h) used to return building code 15 when the building requested was not found, which corresponds to Newell-Simon Hall in the buildingDefines.h file. This was changed so that the code is NOTFOUND, which corresponds to a default response in the buildingDefines.h file.

Room number parse includes a / which gets spoken

If person’s name is not in nrlwhois at all, then it still says multiple entries, be more specific

The code that parsed the building and room number assumed that the building number was always a certain length. When it read the building and room number from the text file generated by the whois command, the / that separated the building and room number was included. The same code also parsed the line with the name in it. If the program read in a comma in the third line (the line that lists the name) then it assumed only one name was found. If it didn’t, it assumed multiple names were found. However, when whois finds no name, the third line says No match found which also does not include a comma. I changed the parse code to more accurately detect when there were multiple names or no names and to correctly parse the building and room number. The changed code is below:

10



while (getline(phoneFile, currstr)) {

if (i > 5) {

cout << "No more info" << endl; return 0;

// Do nothing

} else if (i == 2) {

//cout << currstr << endl;

//cout << "Name is " << currstr << endl;

if(strcmp(currstr.c_str(),"No match found") != 0){

//cout<< "Found a name" << endl;

*fullName = extractFullName(currstr);

cout << "The 15th char is " << endl;

cout << currstr.substr(15, 1) << endl;

foundName = true;

}

else {

//cout<< "Found no matches" <<endl;

*fullName = "";

foundName = false;

}

//if(!strcmp((*fullName).c_str(),"bad"))

//return 2;

//cout << "I think the name is " << *fullName << endl;

//foundName = verifyNamesMatch(name, *fullName); //<<-- Function returns false on acceptable match

//cout << foundName << endl;

} else if (foundName) {

// Usually, the second line is phone number, but sometimes it is the room

// Treat phone number as a line containing only digits, spaces, or dashes

//cout << "found the name, now reading the rest" << endl;

//cout << i << endl;

if (i == 3) {

if (currstr.substr(0, 7) != "E-mail:")

return 2;

}

else if (i == 4){

j = 0;

k = 0;

x = currstr.find("/");

11



*building = atoi((currstr.substr(9,x-9)).c_str());

cout << "Building is " << *building;

*roomNum = currstr.substr(x+1,currstr.length()-x-1);

cout << "The room is " << *roomNum;

}

}

i++;

}

return 1;

}

(Some of the spacing got messed up when copying from the terminal to this document, so some of the indentations may be off. To find the start of this code, search for whois in directions.cc and the while loop starts a few lines below the line with whois in it.)

Remaining Problems:

When malorie starts up, expression attempts to load the malorie script file, but then loads valerie’s script file. The problem is in interact.cc, the initializeExpression function calls the function below, which loads valerie1.fsm (the script file for CMU’s robot). This causes malorie to greet people as a receptionist for the android cafe. Removing the call to readDefnFile in the initializeExpression function will most likely solve the problem, but at the moment expression will not compile because of a problem with the tdl libraries.

Lines 1478-1490 of challenge/src/tasks/roboceptiontist/interact.cc:

#define VALERIE_FSM_LOCN "/src/head/scripts/valerie/valerie%d.fsm"

static void readDefnFile (void)

{

char* chalRoot = getenv("CHALLENGE_ROOT");

if (chalRoot == NULL) chalRoot = DEFAULT_CHALLENGE_ROOT;

char *defnFileName = (char*)malloc(sizeof(char)*(strlen(chalRoot) +

strlen(VALERIE_FSM_LOCN)));

sprintf(defnFileName, "%s" VALERIE_FSM_LOCN, chalRoot, monologueWeek);

HEAD_read_file(defnFileName);

free(defnFileName);

}

(initializeExpression is located just below this function)

Malorie still does monologues, which lock up keyboard input and can take a while to complete. There is a boolean in main.cc in the challenge/src/tasks/roboceptionist directory called doMonologues, which probably will prevent the monologues once it’s set to false. The function parseCmdLineOptions provides a way to set doMonologues to false by adding -g as one of the command line options when running interact, but this glitches as well. The has a switch to handle the different options but there are two cases for the -g option. The first case runs interact in graphical mode so adding -g will cause interact to run in graphical mode (obviously), instead of preventing the monologues. The command line option problem cannot be fixed and the doMonologues boolean cannot be changed until the problem with the tdl libraries is resolved and the code in the roboceptionist directory can be compiled.

Expression can still crash if the user types enough jibberish and will sometimes exit randomly. The reason for this is still unknown.

12



Finally, I didn’t know how to get to the gym so when replacing the directions to CMU’s gym, I set the directions to say that Malorie didn’t know where the gym is. To fix this, get someone who knows where the gym is to write the directions in the buildingDefines.h file (located in challenge/src/tasks/give_directions_nrl).

\textbf{Appendix B}

To run the wax demo using the cardreader:

Turn on sabre and wait until it’s done booting

ssh wax@sabre (use -X if you want to open claw to monitor the processes)

export CENTRALHOST=sabre:1382

cd cardreader/bin

./cardreader -p /dev/ttyS1

swipe the appropriate card

swiping the card twice should shut down all the processes (except name server and X, which microraptor can’t kill for some reason)

The appropriate card can be found by looking at the cardreader configuration file (should be at /home/wax/cardreader/bin) and the authfile, which should be in the same directory as the configuration file.

The cardreader program for the wax demo was changed so that it does not require any IPC libraries. (The version that does use IPC is still in the /home/rosentha/challenge directory). It also attempts to read a configuration file at startup; the file can be specified with an argument (-cf filename). If no file is specified, the cardreader program will attempt to read default.config.

The syntax for the cardreader configuration file is:

newentry

number of swipes needed

card name

command(s)

endentry

Any text outside of the newentry and endentry labels is ignored.

The card name is the name associated with the md5 sums in the authfile, which should be located in cardreader/bin along with the cardreader executable and the configuration file. If the commands in the entry should be triggered by any card, allusers should be used for the card name.

The commands are executed through the system command so it will be as if the command is entered into a terminal. Multiple commands are separated by newlines. The cardreader program will not move on to other commands or read in any other card swipes until the command it is executing is finished or is being run in the background. This usually is not a problem when using microraptor since processes are run through mrterm and mrterm can quit immediately after running processes if it is given the argument

-e quit (in newer versions -q will also work).

The configuration file for the cardreader for a demo should look something like this:

newentry

1

13



cardname

mrterm -e ’load demo.config’ -e ’run -a’ -e ’quit’

endentry

newentry

2

cardname

mrterm -e ’kill -a’ -e ’quit’

endentry

--- End of Example ---

demo.config should be the microraptor configuration file for the processes involved in the demo.

The path to mrterm should already defined or there needs to be a link to it in the same directory that the cardreader executable is in. Also make sure that CENTRALHOST is defined before attempting to run mrterm. For some reason putting

export CENTRALHOST=localhost:1382 as one of the commands does not work. Finally, make sure the path to printConfigFile.perl is defined or that it is in the same directory as cardreader if the microraptor configuration file being loaded needs it.

This is a copy of the config file for cardreader that is used for the wax demo:

newentry

1

waxdemo

/home/wax/mrterm -e ’load /home/wax/sabre_wax_demo.config’ -e ’run base’ -e ’quit’

sleep 2

/home/wax/mrterm -e ’run poseminder’ -e ’quit’

sleep 2

/home/wax/mrterm -e ’run -a’ -e ’quit’

endentry

newentry

2

waxdemo

/home/wax/mrterm -e ’stdin speech quit’ -e ’kill -a’ -e ’quit’

endentry

newentry

1

fakedemo

/home/wax/claw&

endentry

14



newentry

2

fakedemo

killall claw

endentry

Here the link to mrterm was located in /home/wax/ so that had to be specified in the commands. The sleep commands were also necessary since certain processes (i.e. base, poseminder) needed to be running for a while before being able to connect to other processes. The -e ’stdin speech quit’ was necessary because killall sspeechserver was not working as the kill command for the speech server.

The authfile for this demo had waxdemo and fake demo listed along with their md5 sums.

The demo could be run by starting cardreader (by sshing into sabre with user wax and typing ./cardreader -p /dev/ttyS1 in the cardreader/bin directory) and swiping the waxdemo card once. Swiping the waxdemo card twice would shut down the demo.

Adding cards to the authfile:

The buildAuthFile program in the cardreader/bin directory can be used to alter the authfile. This was compiled and ran on somewhere not sabre so it might (and probably will not) run on sabre. On somewhere, type ./buildAuthFile -p /dev/ttyUSB0 and follow the instructions given by the program. If there is a problem getting buildAuthFile to start up be sure the port is specified and that you have access to it.

Acknowledgements

I would like to thank my mentor, William Adams, for explaining the topics
involved in this project and helping me through the glitches in the software.

15



Bibliography

[1] Hall, Brian, ”Beej’s Guide to Unix Interprocess Communication”,
http:/www.ecst.csuchico.edu/ beej/guide/ipc

[2] Lessard, David, ”Malorie Roboceptionist Documentation”, Naval Re-
search Laboratory, 2005

[3] Simmons R., Apfelbaum D., ”Task Description Language Reference”,
http://www.cs.cmu.edu/ tdl/tdl.html

[4] Simmons, R., James, D., ”Inter-Process Communication”,
http://www.cs.cmu.edu/afs/cs/project/TCAS/ftp/IPC Manual.pdf

[5] Smith T., Sellner B., Urmson C., ”Microraptor Manual”,
http://gs295.sp.cs.cmu.edu/brennan/mraptor/source/software/src/
microraptor/docs/mrpator manual.txt

16


