Project Abstract

Student: Sam Davis and Nick Alexander

Title: Σλ Sigma Lisp

Background:



Lisp was invented by John McCarthy in 1958 (published in 1960) when he demonstrated that using only seven native functions (car, cdr, quote, atom, cond, eq, and cons) and a notation for code as a tree of symbols, one could write an evaluation function for a language in itself. Steve Russell, one of McCarthy's students, wrote the first interpreter for Lisp. Lisp in its current form did not appear until the creation of MacLisp at MIT, with the addition of macros. Currently, there are two major dialects of Lisp: Common Lisp and Scheme. Both dialects, however, have problems stemming from the time in which they were developed. Neither has case sensitivity, OS interaction, print formatting, or specific libraries that characterize the popular C model of programming language. Currently, Lisp is, with a few notable exceptions, not used for large scale projects outside the AI realm. Most attempts at modernizing Lisp center on adding syntax, such as Paul Graham's proposed language Arc, or softening the infamous Lisp S-expressions, such as in Dylan, however these approaches can make it more difficult to use macros, which is Lisp's greatest strength.

Description:


The goal of this project is the creation of a Lisp dialect, called Sigma, suitable for large-scale application development which will have the abstraction capabilities of Lisp in a more modern language setting.


Lisp was chosen because languages based on the Lisp model can abstract to a degree beyond other languages. The problem identified, however, was that Lisp has become outdated. Sigma will be a modern version suitable for making applications. In this context, the word modern, can be taken to include developments made in Python, Java, and C (more specifically the C model of language): case-sensitivity, OS neutrality, and print formatting. Obviously the research needed for the creation of a full-featured programming language extends into nearly every computer science field and beyond the capabilities of a two-person one-year project.. However, many of these topics can be compartmentalized into libraries that are not requisite to the core language. Essentially, the language created under this project was a capable shell that can be expanded as time and necessity dictate. Therefore, this project focused on research into basic text parsing, variable and scope management, and garbage collection. 


Sigma was created in the following order: basic data structures, a parser, variable and scope management, an evaluation function, garbage collection, and libraries. The parser takes text and parses it into the appropriate Sigma Lisp S-expression. Next the implementation of variables and the evaluation function, the function that takes S-expressions and executes them, were programmed.
Finally, garbage collection, resource management, and libraries were created. Now Sigma is highly capable of abstraction and functionality. As of now Sigma is not an efficient and speedy language, but we plan to work to change this.

