
3D Physics Simulation

Steven Durant

June 8, 2006

Abstract

The creation of any physics simulation is simply applying the laws of physics into
a virtual environment on a computer. All physical laws are taken into account for
the interactions between the various particles and results can be seen on screen. My
simulation takes into account gravity, elastic collisions and conservation of momentum
among other things. These physical rules result in a visual display via OpenGL. Various
cases can be programmed in and then the particles can be observed as they interact
with one another.

1 Background

Historically the purpose of the physics simulation is to create a realistic three dimensional
environment in which bodies can interact. These simulations are hard to create realistically
because of all of the things that factor in; however, the maker can choose exactly how realistic
he wants his specific simulation to be. For example a simulation could be successful without
factoring in torque and spinning of objects, without these the simulation still works. Once
the backbone behind a simulation is created the author can edit it to add or remove various
effects such as torque, collisions, gravity, elasticity, etc. Typically physics simulations can be
found on the Internet for gravity, springs, collisions, or anything physics related at all.

2 Description

The purpose of writing a simple physics simulation is to see what happens when various test
cases are loaded into the simulator. For example if the simulation is known to run properly,
we could theoretically assign millions of random points in space and see what happened
over thousands of years. All of the units would be physically accurate and the time scale
would be realistic. This way the simulation would actually predict what would happen in
a real life situation. When used to place millions of particles randomly in space and see
what happens, time would be sped up to millions of times faster than actual time and the
user could see what would theoretically happen in the given situation. The solar system is
predicted to have been created by the big bang for example and an experiment like this could

1

show whether or not this is realistic at all. My simulation is currently somewhat simplistic.
The user can define any number of spheres to be loaded into the simulator and the program
will randomly distribute the spheres around a sphere of user-defined radius. The radius
of each sphere is randomized along with its position and small starting velocity in three
dimensions. Each sphere also has a density function which is used to calculate the mass of
the sphere based on the radius. Thus when the user enters a larger and smaller sphere the
collisions are accurate based on density and size. The gravity is completely realistic and is
used to change the accelerations, velocities, and ultimately positions of the spheres. Collision
detection is implemented when the spheres move too close to one another, they will exchange
momentum and bounce off in opposite directions. The simulation can be restarted and I am
currently working on making a function that will randomize a solar-system type orbit where
any number of small spheres are orbiting a much larger one.

3 Methodology

The simulation uses basic laws of physics in order to determine what the interactions between
the various spheres are. Force is given by the equation

and is calculated between every pair of spheres. The total force on each sphere is added
up between every time step and then used to calculate the resulting acceleration of the
sphere, which is given by [a = F / M]. Since my simulation takes place in three dimensions
each sphere is represented by a structure that includes a position array with (x,y,z) values,
a velocity array with (x,y,z) values, and an acceleration array with (x,y,z) values. In order
to calculate the force more simply a unit vector is found between the two spheres based on
their position vectors. The magnitude of this is taken, which is the distance between the two
objects. Force is calculated based on the distance and then the Force scalar is multiplied by
the unit vector along the line between the two spheres. This Force vector is then divided by
mass in order to create the three dimensional acceleration vector for the sphere. This process
is applied to all of the spheres which results in an O(n squared) efficiency for this part of
the code. Unfortunately there really isn’t any way to make this run more efficiently unless
I negate the effects of small enough spheres. After the acceleration vectors are created for
each of the spheres I used Euler’s Method to calculate the resulting velocity of each sphere,
which is in turn used to calculate the resulting position of each sphere. Euler’s Method is
[Vx’ = Vx + Ax * deltaT] for velocity and [Px’ = Px + Vx’ * deltaT] for position.
Namely, the new velocity will be the old one plus the acceleration times the time step for
the calculation. In order to use Euler’s Method for velocity and position I implemented a
time step variable which is modifiable via keyboard input. The ’A’ key will accelerate time
and ’Z’ will decelerate time. The new positions are calculated for every sphere based on the
calculated time and then all of the spheres are moved and the program moves on to the next
time step. Also, every time step yields a collision check for every given sphere against each
other sphere. This could be more efficient but it takes very complicated math to determine
whether or not any given sphere should be ignored or checked for collision so I have not
currently implemented this in my simulation. Basic collision detection while using Euler’s

2

Method also brings about a complication with a loss of energy. What happens is that the
position calculations do not check in advance whether or not the new positions are taken or
open. After all of the spheres move they end up being drawn overlapping each other in some
cases. The collision detection assigns a new velocity to each sphere based on conservation
of momentum, namely... [Vx1’ = Vx2 * M2 / M1] and [Vx2’ = Vx1 * M1 / M2]. These
are due to conservation of momentum and are physically accurate but the spheres still lose
energy due to the overlapping of the spheres. Eventually after a number of collisions the
spheres will lose all energy and collapse on top of each other. The way to get around this is
very complicated, the time steps have to be calculated in advance for all of the spheres and
then checked to see whether two spheres will collide with each other. The next collision to
occur has to be found based on the distance between the spheres and the velocities that the
spheres are moving at. After going through all possible collisions and finding the next one
the time to collision is calculated, next the spheres will do a fraction of the time step until
they are exactly touching, and then the rest of the time step is calculated with their new
velocities based off of the collision. This method allows for perfect collision detection and
no loss of energy; however it is very processor intensive, I am currently trying to figure out
a way to prune this somehow and make it run more efficiently.

4 Analysis

Despite the collision detection not being completely accurate at this time most simulations I
run with my program are innately inaccurate; however if the particles do not collide during
the execution of the simulation the results are accurate. Upon randomizing small starting
velocities and masses of two particles approximately one out of five simulations results in
one particle orbiting the other. Observing the resulting orbit of the two particles is enough
to show that the physics is accurate for a non-collision stand point. The orbit will continue
indefinitely as it should and the particles will never collide. Also the orbiting particle is always
visibly smaller than the one being orbited and the orbit traces out an elliptical path much
like that of the Earth around the Sun. Kepler’s laws also seem to be kept accurate although
I do not have a way of being completely certain. The orbiting particle most definitely speeds
up when closer to the larger particle and slows down when further away. Speed changes are
more drastic in more elliptical orbits. After I have fixed the collision detection I can go back
and calculate the area swept out by the orbiting particle and display it on the screen.

5 Conclusion and Future Plans

The simulation is currently mostly physically accurate but in order to test any real situations
I need to get the collision detection perfectly accurate. As shown in the Methods section this
will take substantial mathematics and time and I am going to attempt to get this working
once I have finished updating my paperwork. Once the collision detection is accurate I
can perform substantial tests on my program such as printing out the total energy and

3

momentum of each of the particles and the system as a whole and making sure that these
values are constant. In addition I can implement inelastic collisions where the particles
will stick when they hit each other and then gravitational forces will cause torques on the
combined particles. Currently my physics simulation is perfectly fine for orbiting particles
and I am working on a method to randomize particles such that they are all orbiting one
significantly more massive central particle. I have run into a few mathematical problems
here as I cannot figure out how to randomize a vector that is perpendicular to the position
vector of the orbiting particle from the center of the system. The problem is that I could
find a perpendicular vector to the central mass, but not a random vector on the plane that
is perpendicular to the position vector. I am hoping to get this method working soon so that
I can perform testing on the orbiting condition which does not involve any collision at all.

References

[1] Tipler, Physics For Scientists and Engineers : Vol. 1: Mechanics, Oscillations and
Waves, Thermodynamics. W. H. Freeman; 4th edition, 1998.

[2] Molofee, Jeff. NeHe Productions. 18 Apr. 2006. ¡http://nehe.gamedev.net¿.

4

