
Audio Timestretching

Adam R. Lederer
Thomas Jefferson High School for Science and Technology

Alexandria, Virginia

June 12, 2006

Abstract

Audio Timestretching is the process of modifying a selection of
digital audio so that it plays back at a different tempo (i.e. is longer
or shorter). The trivial method is to simply extend the length of
each sample (or an interpolated equivalent for non-integers), but this
changes the frequency of the audio, which is an undesired side-effect.
The goal of this project was to change the tempo of the selection of
digital audio while maintaining the greatest possible subjective sim-
ilarity to the original selection, avoiding the modification of pitches
and the addition of artifacting.

1 Introduction

Most current timestretching algorithms work best on monophonic material
as such, I decided that the main focus of my research would be to sepa-
rate individual frequency elements from each other. To do this, I decided I
would build frequency signatures by going to transients (i.e. hits, notes) and
identifying the frequencies which appear or change at these locations.

The algorithm consists of four parts. After an initial pass-through to build
initial signatures, the second pass transfers all of the appropriate signals to
the signatures of best fit. In the third pass, what’s left (which should be any
signals that enter gradually and without transients) is divided similarly into
frequency signatures. The fourth pass separates these.

1



After all (or most) of the amplitude of the signal is transferred into in-
dividual frequency signature audio samples, a comparatively simple inter-
polation in the frequency domain can be applied to each harmonic of each
frequency signature, and the audio can then be summed back together

2 Background

Timestretching is currently quite possible in certain situations. A program
entitled ”Melodyne” by Celemony seems to be at the forefront of timestretch-
ing technology, as well as pitch-shfiting - it works with very little artifact-
ing, but is only for use on monophonic material, and its calculation isn’t
performed in realtime. There are many algorithms, including granulization
and its somewhat equivalent analog of frequency-domain analaysis and sub-
sequent shifting, and there are many applications and plugins that aim to
implement it. However, I endeavored to implement my unique approach,
and to code the application in a manner that could be cross-platform and
conceivably real-time ready.

3 Technology Used

3.1 JUCE

JUCE is a cross-platform audio/video/GUI library that is currently being
developed by Jules, of Tracktion fame. Tracktion itself was implemented on
a JUCE framework. I chose to use JUCE because it’s a C++ library, and
therefore should be suitable for real-time use, as well as because it’s cross-
platform, so that I could minimize the porting work. JUCE also has the
capability to extend its framework for use in VST plugins, which would be
useful for the real-time version.

3.2 Linux

Linux is an open-source operating system on which I decided to do my main
development. I chose to develop on Linux mainly because the Computer
Systems Lab here at TJHSST runs Linux - it was the only real option.

2



4 Progress

The development progress didn’t go smoothly - not smoothly at all. From
the beginning, I was facing incompatibilities and source code errors beyond
my ability to easily deal with - I did surmount them, though, surprisingly
enough, enough to get JUCE compiled and installed in my home directory
(which helped me produce some source code error reports to Jules, the JUCE
developer). After that, I spent the rest of my time (which was rather short,
discounting the time necessary to develop research materials and documen-
tation, as well as the time I spent snagged by incidental bugs and adminis-
tration issues) developing a number of prototypes.

In each prototype I endeavored to explore a different aspect of JUCE, in
order that I be able to code the final product. First, I developed a prototype
to explore the basic application framework of JUCE - then I researched and
implemented some of the component/GUI/visual functions. In a third pro-
totype I focused on action callbacks and user response. Most importantly,
in my fourth prototype, I looked into JUCE’s audio playback functions, but
found them extremely confusing. Later I would discover that I had been
experiencing the effects of a mismatch between documentation version and
library version, but at that point I knew nothing of that, and proceeded to
be frustrated continuously in attempting to implement audio playback and
audio device queueing until the end of my research experience.

5 Results and Discussion

The TimeStretching concept I had in mind never panned out, but I will
readily describe my research experience as having been very educational. The
code itself wasn’t entirely above my level, so that I could handle it, but the
administration and incidental challenges with which I was faced were trials I
was totally unprepared for, and as such I learned a great deal in attempting
to sort them out. I do, however, have some interest in implementing the
TimeStretching algorithm I’ve developed at some point in the future, as well
as in doing some more intensive (and real) research. This is work that a
future party could aim to take on, although if that party is not myself, it’s
unclear as to whether my experience in working on this project would be of
any use to them.

3



References

[1] Celemony, ”Melodyne”, http://www.celemony.com

[2] Wikipedia, ”TimeStretching”, http://en.wikipedia.org/wiki/Timestretching

[3] John Arroyo, ”Phase Vocoder”, http://dsp.mixin.com/index.html

4


