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Abstract 
 

Traditional relational and multidimensional databases are poorly equipped to deal 
with data collected from dynamic and volatile environments, where characteristics and 
conditions are erratic or goals of the system could alter rapidly. These databases’ data 
models of real-world objects require human involvement for creation and modification, 
since neither relational nor multidimensional databases have adequate structures that can 
employ autonomous self-modification while adjusting to changes in environment. The 
goal of this research is to design a database architecture that does not depart far from the 
foundations in relational and multidimensional databases, but has a sufficiently flexible 
structure to allow the database to adequately self-manage its data model. Motivated 
applications presented range from intelligent agents to combat management and search 
and rescue operations. 
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1      Introduction 

The goal of this research is to create a database architecture that utilizes best features of 

relational and multidimensional database models, and employs a flexible structure to 

adequately self-manage its data model in real-time, volatile, and multi-behavioral 

environments. Relational and multidimensional systems primarily address data 

management needs of environments in which characteristics are well known at database 

design and modeling stage. Steady nature of such environments tolerates need of human 

involvement to make modifications of the database structure. However, highly dynamic 

environments would require an ability to autonomously change database structure in real 

time by the database itself.   

 A multidimensional organization is fundamental for the proposed database design. 

Dimensional structure is a robust and adaptable mechanism to express objects, complex 

real-world characteristics, and relationships. The ability to simplify mapping between 

real-world objects and database structure substantially reduces complexity of Structured 

Query Language (SQL) statements, used in communication with relational databases. 

This project addresses foundations of the proposed database organization, 

explains the database architecture, discusses methods of manipulation of the data model, 

and demonstrates an implementation. Motivated applications for the database architecture 

also are presented. 
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2      Background 
The field of database systems has been an important development area in software 

engineering for the past 30 years. Relational Database Management Systems (RDBMS) 

became predominant for many business management applications. Relational databases 

use relations (tables with columns and rows), attributes (named columns of relations), and 

tuples (rows of relations) to organize data.  The databases have a relatively easy structure 

to understand and use. Relational databases are capable of handling enormous volumes of 

data, while providing high performance for processing of data updating. However, 

organization properties of relational database become disadvantages in dynamic 

environments. Relational data structures could not directly model after real-world 

characteristics, because the structures are oriented for dealing with data semantics, 

consistency, and redundancy problems. Therefore, relational databases require human 

involvement for conceptual, logical, and physical design phases before real world objects 

could be mapped to their respective data models. Another considerable obstacle for 

applying relational databases in dynamic environments is the need for client software to 

adjust SQL statements to fit changing database structure on the fly.  

Multidimensional databases, a core component of On-Line Analytical Processing 

(OLAP) systems, address some of the weaknesses of relational databases. These database 

systems implement cube database structures that associate variables based on 

dimensional coordinates. Dimensions represent intuitive and direct form of characteristics 

of real-world objects. The databases hide as much complex syntax as possible from users 

and provide consistent response times for all queries. Multidimensional databases still 
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have difficultly adapting to real-time processes, because they do not have a flexible 

mechanism to dynamically change dimensionality of the database. A new 

multidimensional structure (cube) must be constructed to support addition and removal of 

dimensions whenever characteristics change in the environment. 

Considering the advantages and disadvantages of relational and multidimensional 

databases, this project’s goal is to find a database architecture that would include best of 

both database models and serve dynamic environments effectively. 

 
3      Proposed Design 
The proposed design includes database architecture and methods of interaction between 

client’s software and the database. The design extends a multidimensional database 

model to include new elements and capabilities that would serve well in real-time, 

volatile environments. A multidimensional model was chosen as fundamental for the 

proposed model because of its ability to describe complex entities by subdividing them 

into basic constituents, embodied within the database as a collection of dimensions. 

Dimensions consist of a collection of members, representing components of those 

constituents. For instance, a dimension representing geographical locations would consist 

of geographical sites, such as cities, as its members. This fundamental property of 

multidimensional databases can be used to effectively describe real-world characteristics 

using a set of dimensions. 

 Consider an environment where numerous agents exist and are capable of 

interacting with the database. Agents can have different purposes and data with which 

they operate can constitute different sets of dimensions. The database receives data about  
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the environment it serves only through agents. To make data exchange between a 

database and an agent possible, an agent must be connected to the database. Therefore, 

upon database initialization, when no agents are connected, the database is either empty 

or contains a predefined set of dimensions (Figure 1). Interaction between agents and the 

database will lead to database self-modification in order to accommodate input data and 

store in multidimensional space (Figure 2). Client software incorporated on the agent side 

organizes data by dimensions and cell values. Obtaining dimensions and cell values 

through communication with agents allows the database to construct its multidimensional 

structure.  
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Figure 1  - No agents connected, no dimensions creat
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In order for the database to distinguish dimensions and members, each is assigned 

a unique identification across all the agents that may participate in communication with 

the database. Subsequent agents connected to the database either share existing 

dimensions and cells or create new dimensions and cells (Figure 4).  

Volatility of the environment also implies the possibility of a disconnection of an 

agent from the database. Disconnecting the last agent that solely uses a particular set of 

dimensions triggers removal of those dimensions from the multidimensional model. 

However, to preserve the already collected data, the current cube would be saved in an 

array of historic cubes. The rationale behind transformation of the multidimensional 

model of the database is that the database does not have a way to conclude about future 

agent departure and arrival (connection and disconnection). Maintaining unused 

dimensions is costly and inefficient for the database. At the same time, dimensional and 

cell values produced during agent connection session could be utilized when dimensions 

reappear.  
D2 
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Figure 4 
Dimensionality of the cube changes when an agents connects to the database 
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 For example, in Figure 5, an agent that collects data represented by D1, D2, D3, 

D4 dimensions reconnects with the database whose dimensional structure does not 

include D4 at time period T3. That event triggers a database search across historic cubes 

for one that matches the current dimensional model. If such a cube is found, in this case 

at T1, then the current cube incorporates cell data from time period T2 and T1. 

 
 
 
 
 
 
 
 
 

T1Time T2T3
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dimension D4 

Dimensionality: 
D1, D2, D3, D4 
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Figure 5  - Recovery of dimension from historic cube 

 

  

 Standard multidimensional databases institute a hierarchical organization of 

members within dimensions in order to reflect most common business organization and 

relations. However, solely hierarchical structure is substantially insufficient to represent 

the complexity of real world relationships. The proposed design embraces a graph 

structure as a method to describe the relationship between members of dimensions. A 

graph is constructed using member as vertices and relationships as edges. Each edge is 

associated with a weighted value that represents different attributes of a relation, such as 

cost or distance (Figure 8).  
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Figure 6 – Dimension organization 

Multiple attributes are defined for the same weighted edge, providing enough 

flexibility to express complex relationships (Figure 7). For example, an edge can 

represent distance and travel time. Unique names for each edge attribute make it possible 

to distinguish separate attributes.  

Edge Weight – distance Weight – time 

M7 – M6 4 20 

M7 – M5 3 25 

M5 – M6 2 30 

 
Figure 7 – Example of multiple edge weights    

A substantial advantage of relational databases over other types of databases is the 

ability to establish relations between tables. The proposed design implements such an 

ability to create relationships between not only members of the same dimension but also 

those of other dimensions (Figure 8). For instance, one dimension represents locations 

while another represents agents in the system. Relationships associate particular agents 

with particular locations. 
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Figure 8 – Cross-dimensional relationships  

 

Whenever a new dimension is created, two default members within it are 

constructed. The first member, named “ALL”, is the highest level of aggregation for cell 

data in that dimension. For example, a multidimensional structure has three dimensions 

Time, X-coordinate, Y-coordinate. The three dimensions form a cube that stores data 

transferred by the agent during an exploration of a 2-D surface. As more locations on the 

surface with X- and Y- coordinates are surveyed, more data is populated in the 3-D cube.  

While time category is important for particular measurements, a representation of the 

entire pool of data on X- and Y- coordinates surface is needed with no regard to the time 

data was collected. Therefore, aggregation of this data over the Time dimension to the 

“ALL” member consists of geometrically projected values on the surface formed by X- 

and Y- coordinates (Figure 9). 
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Figure 9 – Projectile of data based on X- Y- surface 
 

The second default is the base member. It links cells that have no associations 

with some dimensions in the cube. Returning to the previous example, the 2D-surface is 

represented by three dimensions in the cube. An additional agent is attached with the 

capability to explore the space formed by and the height above the 2D-surface (Z-

coordinate). Since both agents share the same cell values, the database alters dimensional 

structure to incorporate the Z-dimension, becoming a four dimensional structure (X, Y, Z, 

and Time dimensions). The first agent still operates in a two dimensional coordinate 

system and has no way of knowing that the database changed to incorporate the Z-

dimension. The task of the database is to recognize and transfer three-dimensional into 

four-dimensional identification by assigning the base member from the Z-dimension. 
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4      Implementation 
Considering the goal of this research was to find the architecture for a database that meets 

the needs of volatile and multi-behavioral environments, the implementation stage was 

aimed only to provide proof of concept. Characteristics of a full-scale database, such as 

transaction support, language interface, or concurrent updates, were not implemented and 

will be considered for the next design phase. The current implementation functions only 

as an in-memory database without an option for permanent storage. This stage of 

implementation builds a new data manager and ability to query data. The implementation, 

programmed in Java, includes a storage manager for multidimensional cell values (cube), 

a dimensional manager module, and a relational manager.  

4.1 Storage Manager for Multidimensional Cell Values (Cube) 

The storage manager handles data organization in the database. It retrieves data along 

with dimensions and members, which serve as coordinates for identifying data in the 

cube. The dimensions are compared against a list of those present in the current data 

cube. If the sets do not match, the processor checks if the input statement contains new 

dimensions and updates the database cube (described in section 4.2). If the statement 

contains less dimensions than those present in the cube, pairs of missing dimensions and 

base members are added to the coordinate sets. Then, the data is saved in a cell within a 

cube organized as a hashmap. All the dimensions have an “ALL” member, representing 

aggregation of the data in a dimension. The manager updates the aggregation value each 

time data is modified. Since the dimension aggregations are calculated at each individual 

insertion, the time of retrieving an aggregation value is particularly efficient. 
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The novelty of this mechanism offers the ability to dynamically resolve 

dimensional coordinates compared to traditional multidimensional database where the 

coordinates in all dimensions in the cube must be fully specified before data can be 

updated.   

4.2 Dimension Manager Module 
 
The purpose of the dimensions manager is to self-modify dimensional structure of the 

database cube. The manager can add or remove dimensions when it receives a data 

update statement containing new dimensions or when the last database client (agent) that 

solely uses certain dimensions is disconnected. The rationale behind removing 

dimensions is to sustain cube update efficiency by maintaining only used dimensions by 

current database clients. However, the ultimate goal of the database is to preserve all data 

collected; the current cube is saved in an array of historic cubes. 

Parsing the update statement, the dimension manager retrieves a list of 

dimensions and searches for those not present in the current database model. If any new 

dimensions are identified, the database structure is dynamically modified to include those 

dimensions (Figure 10). Each new dimension and its base member are added to existing 

cells’ coordinate sets. Cells that contain the new dimension’s aggregation data are also 

added to the cube. Then, the manager searches through an array of historic cubes for a 

cube with the same set of dimensions. If such a cube is found, cells from the historic cube 

are added to current cube, with exception of cells containing base and aggregation 

members of new dimension. As each new cell is added, the aggregations for dimensions 

are updated. Thus, the cube recovers previously saved data with the same dimensionality 

(Figure 5). 
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 Figure 10 – Dimension manager module 

The manager also obtains dimensions’ members from an update statement. 

Members in a dimension object are presented as nodes in a linked list and are indexed 

through a binary tree. The manager searches the index tree for an equivalent member. If a 

member is not found, a new node is created to represent the member in the appropriate 

order, and the index is updated. 

In case a dimension is removed, the cube is first saved to a historic array of cubes. 

The current cube’s data cells not containing the dimension’s base member are removed, 

and the manager removes the dimension from coordinate sets of all data cells left. 
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A similar operation in traditional multidimensional databases would require 

restructuring and rebuilding the cube and recalculating all the aggregations. Removing 

dimensions with associated cell values would lead to loss of data, since historic cubes are 

not maintained. Proposed architecture provides more flexibility in manipulation of 

dimensions and cell values. 

4.3 Relational Manager 

Relational manager is similar to the organization found in relational databases. The 

manager is capable of creating objects that utilize hashmaps as structures for storing 

relational data. The relational tables have unique names assigned at the time of their 

creation and store relational associations (edges) between members within the same 

dimension or between different dimensions. The relational associations may be 

characterized by multiple attributes (Figure 7 and Figure 8).  

5      Motivating Applications 

5.1 Artificial Intelligence Agents 

Progress in the field of Artificial Intelligence (AI) has been primarily geared toward 

development of sophisticated algorithms, wherein storage of underlying data was 

designated only a supportive role. The rationale behind this data storage trend maybe 

attributes to limitations of memory and permanent storage resources available for 

autonomous agents. However, new innovations allow agents to integrate with database 

systems. For example, new data storage technologies increase memory capacity needed 

for database software on board of agents, or wireless communication allows data 

interchange between agents and remote database systems. 
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Another reason preventing AI agents from using database systems was limited 

agent functionalities and not well developed cross agent communication technology. 

Standalone agents were able to accomplish all necessary data manipulation by only 

incorporating data structures within loaded agent software. Absence of a need in 

concurrency control made it virtually unnecessary to include any ACID (atomicity, 

consistency, isolation, and durability) database properties as part of AI agent data 

management. 

 Advancements in AI led to significant changes in the field of automated and half-

automated agents. AI agents’ spectrum of capabilities increased; areas of employment 

widened.  

AI systems have the potential to grow from a standalone agent to a complex 

conglomerate system where multiple AI agents would have different sub-tasks while 

underlining the mutual tasks of the whole system. Colonies of species, such as ants or 

bees, could serve as examples of such conglomerate systems in the real world. The 

species are grouped based on specific tasks, such as soldiers, builders, and so on, but 

share a common physical space and resources. Therefore, situations could arise wherein 

multiple agents unified in such a system would need a common database in which data 

could be shared between members of the system. 

5.2 Other Applications 

The proposed database can be adapted to systems other than those present in AI. 

Examples of such systems whose characteristics are erratic and can change rapidly, are 

combat and search-and-rescue operations.  
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A battlefield can prompt hasty changes in resources required. Combat forces may 

call units, similar to agents discussed earlier, equipped with wireless computing devices 

that are capable of interacting with a central database. By depending on data retrieved 

from a common database that stores real-time information, military units may 

immediately participate in a battle with minimum knowledge about location and 

disposition of own forces and enemies. Collected data from separate units can be easily 

shared with limited or no verbal communication. Air, naval, or ground units can operate 

with dimensions relevant only to their unique needs, and also share dimensions with other 

types of units. 

Emergency management systems could have similar needs for databases. In case 

of natural disasters, rescue delegations have little time to prepare and must operate in 

chaotic conditions. Coordination efforts between rescue forces are complex tasks. To 

increase efficiency, teams will interact with a database to retrieve necessary data 

collected by all types of teams (police, firefighters, army, etc.). Such electronic 

coordination could be vital important in international rescue efforts, in which often 

languages are barriers between different international teams. 

6      Discussion & Conclusion 
The goal of this research was to analyze relational and multidimensional database 

systems and to design an optimal database architecture that would perform most 

effectively in real-time, volatile, and multi-behavioral environments. In such 

environments, database clients can modify the database structure in unpredictable ways to 

accommodate changes in the environment. Relational and multidimensional databases  
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have strong fundamentals, however, they require human interaction for data structure 

alterations. The proposed design is based on a multidimensional model’s fundamental 

structure, because of its ability to intuitively divide complex entities of the real world into 

basic constituents. The database architecture is sufficiently flexible to adequately self-

manage its data model, allowing addition and subtraction of dimensions in 

multidimensional space. The current state of the database can be utilized in many 

applications where database in-memory would be sufficient to solve data management 

needs. The physical aspects such as concurrent control and transaction management as 

the next phase for future research. 
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