

Multidimensional Database Representation of
Real-time, Volatile, and Multi-behavioral Environments

David Levit

Thomas Jefferson High School for Science and Technology
Alexandria, Virginia

Abstract

Traditional relational and multidimensional databases are poorly equipped to deal
with data collected from dynamic and volatile environments, where characteristics and
conditions are erratic or goals of the system could alter rapidly. These databases’ data
models of real-world objects require human involvement for creation and modification,
since neither relational nor multidimensional databases have adequate structures that can
employ autonomous self-modification while adjusting to changes in environment. The
goal of this research is to design a database architecture that does not depart far from the
foundations in relational and multidimensional databases, but has a sufficiently flexible
structure to allow the database to adequately self-manage its data model. Motivated
applications presented range from intelligent agents to combat management and search
and rescue operations.

 1

Multidimensional Database Representation of

Real-time, Volatile, and Multi-behavioral Environments

David Levit
Thomas Jefferson High School for Science and Technology

1 Introduction

The goal of this research is to create a database architecture that utilizes best features of

relational and multidimensional database models, and employs a flexible structure to

adequately self-manage its data model in real-time, volatile, and multi-behavioral

environments. Relational and multidimensional systems primarily address data

management needs of environments in which characteristics are well known at database

design and modeling stage. Steady nature of such environments tolerates need of human

involvement to make modifications of the database structure. However, highly dynamic

environments would require an ability to autonomously change database structure in real

time by the database itself.

 A multidimensional organization is fundamental for the proposed database design.

Dimensional structure is a robust and adaptable mechanism to express objects, complex

real-world characteristics, and relationships. The ability to simplify mapping between

real-world objects and database structure substantially reduces complexity of Structured

Query Language (SQL) statements, used in communication with relational databases.

This project addresses foundations of the proposed database organization,

explains the database architecture, discusses methods of manipulation of the data model,

and demonstrates an implementation. Motivated applications for the database architecture

also are presented.

 2

David Levit
2 Background
The field of database systems has been an important development area in software

engineering for the past 30 years. Relational Database Management Systems (RDBMS)

became predominant for many business management applications. Relational databases

use relations (tables with columns and rows), attributes (named columns of relations), and

tuples (rows of relations) to organize data. The databases have a relatively easy structure

to understand and use. Relational databases are capable of handling enormous volumes of

data, while providing high performance for processing of data updating. However,

organization properties of relational database become disadvantages in dynamic

environments. Relational data structures could not directly model after real-world

characteristics, because the structures are oriented for dealing with data semantics,

consistency, and redundancy problems. Therefore, relational databases require human

involvement for conceptual, logical, and physical design phases before real world objects

could be mapped to their respective data models. Another considerable obstacle for

applying relational databases in dynamic environments is the need for client software to

adjust SQL statements to fit changing database structure on the fly.

Multidimensional databases, a core component of On-Line Analytical Processing

(OLAP) systems, address some of the weaknesses of relational databases. These database

systems implement cube database structures that associate variables based on

dimensional coordinates. Dimensions represent intuitive and direct form of characteristics

of real-world objects. The databases hide as much complex syntax as possible from users

and provide consistent response times for all queries. Multidimensional databases still

 3

David Levit

have difficultly adapting to real-time processes, because they do not have a flexible

mechanism to dynamically change dimensionality of the database. A new

multidimensional structure (cube) must be constructed to support addition and removal of

dimensions whenever characteristics change in the environment.

Considering the advantages and disadvantages of relational and multidimensional

databases, this project’s goal is to find a database architecture that would include best of

both database models and serve dynamic environments effectively.

3 Proposed Design
The proposed design includes database architecture and methods of interaction between

client’s software and the database. The design extends a multidimensional database

model to include new elements and capabilities that would serve well in real-time,

volatile environments. A multidimensional model was chosen as fundamental for the

proposed model because of its ability to describe complex entities by subdividing them

into basic constituents, embodied within the database as a collection of dimensions.

Dimensions consist of a collection of members, representing components of those

constituents. For instance, a dimension representing geographical locations would consist

of geographical sites, such as cities, as its members. This fundamental property of

multidimensional databases can be used to effectively describe real-world characteristics

using a set of dimensions.

 Consider an environment where numerous agents exist and are capable of

interacting with the database. Agents can have different purposes and data with which

they operate can constitute different sets of dimensions. The database receives data about

 4

David Levit

the environment it serves only through agents. To make data exchange between a

database and an agent possible, an agent must be connected to the database. Therefore,

upon database initialization, when no agents are connected, the database is either empty

or contains a predefined set of dimensions (Figure 1). Interaction between agents and the

database will lead to database self-modification in order to accommodate input data and

store in multidimensional space (Figure 2). Client software incorporated on the agent side

organizes data by dimensions and cell values. Obtaining dimensions and cell values

through communication with agents allows the database to construct its multidimensional

structure.

3

2

e 0

1
Database

Agents Agents

Figure 1 - No agents connected, no dimensions creat

 5
Tim
ed

David Levit

 Agents

1

 Time

Agents

Time

Dimensions
Cell

Figure 2 – Agent connected, dimensions and cube cr

Apart from dimensions that the database can import from age

of dimensions will be present in the database. For example, Time mea

in the database as a separate dimension, allowing the cells in the data

by time and other dimensions (Figure 3).

 Database

Figure 3 – Multidimensional representation of da

Time

Agent

 6
3

2

eated

nts, a permanent set

surement is present

base to be described

ta

Data
Received

By Agents
From Real World

David Levit

In order for the database to distinguish dimensions and members, each is assigned

a unique identification across all the agents that may participate in communication with

the database. Subsequent agents connected to the database either share existing

dimensions and cells or create new dimensions and cells (Figure 4).

Volatility of the environment also implies the possibility of a disconnection of an

agent from the database. Disconnecting the last agent that solely uses a particular set of

dimensions triggers removal of those dimensions from the multidimensional model.

However, to preserve the already collected data, the current cube would be saved in an

array of historic cubes. The rationale behind transformation of the multidimensional

model of the database is that the database does not have a way to conclude about future

agent departure and arrival (connection and disconnection). Maintaining unused

dimensions is costly and inefficient for the database. At the same time, dimensional and

cell values produced during agent connection session could be utilized when dimensions

reappear.
D2

D2

Time
Dimension

D1

D3
T1

Agent 2 connected with
dimensions D1, D2, D3

D1
D4

D3
T2

Agent 2 connected with
dimensions D1, D2, D3, D4

Figure 4
Dimensionality of the cube changes when an agents connects to the database

 7

David Levit

 For example, in Figure 5, an agent that collects data represented by D1, D2, D3,

D4 dimensions reconnects with the database whose dimensional structure does not

include D4 at time period T3. That event triggers a database search across historic cubes

for one that matches the current dimensional model. If such a cube is found, in this case

at T1, then the current cube incorporates cell data from time period T2 and T1.

T1Time T2T3

Departure of agent
with dimension D4

Arrival of agent with
dimension D4

Dimensionality:
D1, D2, D3, D4

Dimensionality:
D1, D2, D3, D4

Dimensionality:
D1, D2, D3

Figure 5 - Recovery of dimension from historic cube

 Standard multidimensional databases institute a hierarchical organization of

members within dimensions in order to reflect most common business organization and

relations. However, solely hierarchical structure is substantially insufficient to represent

the complexity of real world relationships. The proposed design embraces a graph

structure as a method to describe the relationship between members of dimensions. A

graph is constructed using member as vertices and relationships as edges. Each edge is

associated with a weighted value that represents different attributes of a relation, such as

cost or distance (Figure 8).

 8

David Levit

1

3 2

15 9

6

11
7

10

2 M2M1

M4

M5M8

M3Members: M1 – M8

Weight

Edge

4

M7
M6

Figure 6 – Dimension organization

Multiple attributes are defined for the same weighted edge, providing enough

flexibility to express complex relationships (Figure 7). For example, an edge can

represent distance and travel time. Unique names for each edge attribute make it possible

to distinguish separate attributes.

Edge Weight – distance Weight – time

M7 – M6 4 20

M7 – M5 3 25

M5 – M6 2 30

Figure 7 – Example of multiple edge weights

A substantial advantage of relational databases over other types of databases is the

ability to establish relations between tables. The proposed design implements such an

ability to create relationships between not only members of the same dimension but also

those of other dimensions (Figure 8). For instance, one dimension represents locations

while another represents agents in the system. Relationships associate particular agents

with particular locations.

 9

David Levit

M2

Named Relationship

M3

M1
K1

K2

K3

M4
K4

Dimension M Dimension K

Figure 8 – Cross-dimensional relationships

Whenever a new dimension is created, two default members within it are

constructed. The first member, named “ALL”, is the highest level of aggregation for cell

data in that dimension. For example, a multidimensional structure has three dimensions

Time, X-coordinate, Y-coordinate. The three dimensions form a cube that stores data

transferred by the agent during an exploration of a 2-D surface. As more locations on the

surface with X- and Y- coordinates are surveyed, more data is populated in the 3-D cube.

While time category is important for particular measurements, a representation of the

entire pool of data on X- and Y- coordinates surface is needed with no regard to the time

data was collected. Therefore, aggregation of this data over the Time dimension to the

“ALL” member consists of geometrically projected values on the surface formed by X-

and Y- coordinates (Figure 9).

 10

David Levit

T3

Time

T2

“All” node of
Time dimension

X – coordinate
Dimension

Y – coordinate
Dimension

Data

Projected data

Figure 9 – Projectile of data based on X- Y- surface

The second default is the base member. It links cells that have no associations

with some dimensions in the cube. Returning to the previous example, the 2D-surface is

represented by three dimensions in the cube. An additional agent is attached with the

capability to explore the space formed by and the height above the 2D-surface (Z-

coordinate). Since both agents share the same cell values, the database alters dimensional

structure to incorporate the Z-dimension, becoming a four dimensional structure (X, Y, Z,

and Time dimensions). The first agent still operates in a two dimensional coordinate

system and has no way of knowing that the database changed to incorporate the Z-

dimension. The task of the database is to recognize and transfer three-dimensional into

four-dimensional identification by assigning the base member from the Z-dimension.

 11

David Levit
4 Implementation
Considering the goal of this research was to find the architecture for a database that meets

the needs of volatile and multi-behavioral environments, the implementation stage was

aimed only to provide proof of concept. Characteristics of a full-scale database, such as

transaction support, language interface, or concurrent updates, were not implemented and

will be considered for the next design phase. The current implementation functions only

as an in-memory database without an option for permanent storage. This stage of

implementation builds a new data manager and ability to query data. The implementation,

programmed in Java, includes a storage manager for multidimensional cell values (cube),

a dimensional manager module, and a relational manager.

4.1 Storage Manager for Multidimensional Cell Values (Cube)

The storage manager handles data organization in the database. It retrieves data along

with dimensions and members, which serve as coordinates for identifying data in the

cube. The dimensions are compared against a list of those present in the current data

cube. If the sets do not match, the processor checks if the input statement contains new

dimensions and updates the database cube (described in section 4.2). If the statement

contains less dimensions than those present in the cube, pairs of missing dimensions and

base members are added to the coordinate sets. Then, the data is saved in a cell within a

cube organized as a hashmap. All the dimensions have an “ALL” member, representing

aggregation of the data in a dimension. The manager updates the aggregation value each

time data is modified. Since the dimension aggregations are calculated at each individual

insertion, the time of retrieving an aggregation value is particularly efficient.

 12

David Levit

The novelty of this mechanism offers the ability to dynamically resolve

dimensional coordinates compared to traditional multidimensional database where the

coordinates in all dimensions in the cube must be fully specified before data can be

updated.

4.2 Dimension Manager Module

The purpose of the dimensions manager is to self-modify dimensional structure of the

database cube. The manager can add or remove dimensions when it receives a data

update statement containing new dimensions or when the last database client (agent) that

solely uses certain dimensions is disconnected. The rationale behind removing

dimensions is to sustain cube update efficiency by maintaining only used dimensions by

current database clients. However, the ultimate goal of the database is to preserve all data

collected; the current cube is saved in an array of historic cubes.

Parsing the update statement, the dimension manager retrieves a list of

dimensions and searches for those not present in the current database model. If any new

dimensions are identified, the database structure is dynamically modified to include those

dimensions (Figure 10). Each new dimension and its base member are added to existing

cells’ coordinate sets. Cells that contain the new dimension’s aggregation data are also

added to the cube. Then, the manager searches through an array of historic cubes for a

cube with the same set of dimensions. If such a cube is found, cells from the historic cube

are added to current cube, with exception of cells containing base and aggregation

members of new dimension. As each new cell is added, the aggregations for dimensions

are updated. Thus, the cube recovers previously saved data with the same dimensionality

(Figure 5).

 13

 David Levit
Input Statement

D1,D2,D3

Dimens-
ionality
of Cube

New
Dimension

Created

Loop
Until

Dimensionality
Matches

Old cell values get
new dimensions

New Members Created
if They Don’t Exist

More Dimensions
Match Current
Dimensionality

Update Cell Value & Aggregation

 Figure 10 – Dimension manager module

The manager also obtains dimensions’ members from an update statement.

Members in a dimension object are presented as nodes in a linked list and are indexed

through a binary tree. The manager searches the index tree for an equivalent member. If a

member is not found, a new node is created to represent the member in the appropriate

order, and the index is updated.

In case a dimension is removed, the cube is first saved to a historic array of cubes.

The current cube’s data cells not containing the dimension’s base member are removed,

and the manager removes the dimension from coordinate sets of all data cells left.

 14

David Levit

A similar operation in traditional multidimensional databases would require

restructuring and rebuilding the cube and recalculating all the aggregations. Removing

dimensions with associated cell values would lead to loss of data, since historic cubes are

not maintained. Proposed architecture provides more flexibility in manipulation of

dimensions and cell values.

4.3 Relational Manager

Relational manager is similar to the organization found in relational databases. The

manager is capable of creating objects that utilize hashmaps as structures for storing

relational data. The relational tables have unique names assigned at the time of their

creation and store relational associations (edges) between members within the same

dimension or between different dimensions. The relational associations may be

characterized by multiple attributes (Figure 7 and Figure 8).

5 Motivating Applications

5.1 Artificial Intelligence Agents

Progress in the field of Artificial Intelligence (AI) has been primarily geared toward

development of sophisticated algorithms, wherein storage of underlying data was

designated only a supportive role. The rationale behind this data storage trend maybe

attributes to limitations of memory and permanent storage resources available for

autonomous agents. However, new innovations allow agents to integrate with database

systems. For example, new data storage technologies increase memory capacity needed

for database software on board of agents, or wireless communication allows data

interchange between agents and remote database systems.

 15

 David Levit

Another reason preventing AI agents from using database systems was limited

agent functionalities and not well developed cross agent communication technology.

Standalone agents were able to accomplish all necessary data manipulation by only

incorporating data structures within loaded agent software. Absence of a need in

concurrency control made it virtually unnecessary to include any ACID (atomicity,

consistency, isolation, and durability) database properties as part of AI agent data

management.

 Advancements in AI led to significant changes in the field of automated and half-

automated agents. AI agents’ spectrum of capabilities increased; areas of employment

widened.

AI systems have the potential to grow from a standalone agent to a complex

conglomerate system where multiple AI agents would have different sub-tasks while

underlining the mutual tasks of the whole system. Colonies of species, such as ants or

bees, could serve as examples of such conglomerate systems in the real world. The

species are grouped based on specific tasks, such as soldiers, builders, and so on, but

share a common physical space and resources. Therefore, situations could arise wherein

multiple agents unified in such a system would need a common database in which data

could be shared between members of the system.

5.2 Other Applications

The proposed database can be adapted to systems other than those present in AI.

Examples of such systems whose characteristics are erratic and can change rapidly, are

combat and search-and-rescue operations.

 16

David Levit

A battlefield can prompt hasty changes in resources required. Combat forces may

call units, similar to agents discussed earlier, equipped with wireless computing devices

that are capable of interacting with a central database. By depending on data retrieved

from a common database that stores real-time information, military units may

immediately participate in a battle with minimum knowledge about location and

disposition of own forces and enemies. Collected data from separate units can be easily

shared with limited or no verbal communication. Air, naval, or ground units can operate

with dimensions relevant only to their unique needs, and also share dimensions with other

types of units.

Emergency management systems could have similar needs for databases. In case

of natural disasters, rescue delegations have little time to prepare and must operate in

chaotic conditions. Coordination efforts between rescue forces are complex tasks. To

increase efficiency, teams will interact with a database to retrieve necessary data

collected by all types of teams (police, firefighters, army, etc.). Such electronic

coordination could be vital important in international rescue efforts, in which often

languages are barriers between different international teams.

6 Discussion & Conclusion
The goal of this research was to analyze relational and multidimensional database

systems and to design an optimal database architecture that would perform most

effectively in real-time, volatile, and multi-behavioral environments. In such

environments, database clients can modify the database structure in unpredictable ways to

accommodate changes in the environment. Relational and multidimensional databases

 17

David Levit

have strong fundamentals, however, they require human interaction for data structure

alterations. The proposed design is based on a multidimensional model’s fundamental

structure, because of its ability to intuitively divide complex entities of the real world into

basic constituents. The database architecture is sufficiently flexible to adequately self-

manage its data model, allowing addition and subtraction of dimensions in

multidimensional space. The current state of the database can be utilized in many

applications where database in-memory would be sufficient to solve data management

needs. The physical aspects such as concurrent control and transaction management as

the next phase for future research.

 18

David Levit

References
[1] Connolly, Thomas and Carolyn Begg. Database Systems. Harlow: Pearson

Educational Limited, 2002.

[2] Bagnall, Brian. Core Lego Mindstorms Programming: Unleash the Power of the

Java Platform. Upper Saddle River: Prentice Hall PTR, 2002.

[3] Delaney, Kalen. Inside Microsoft SQL Server 2000. Redmont: Microsoft Press,

2001.

[4] Horstmann, Cay S. and Gary Cornell. Core Java 2 Volume II – Advanced Features.

Palo Alto: Sun Microsystems, Inc., 2002.

[5] Jones, Tim M. AI Application Programming. Hingham: Charles River Media, Inc.,

2003.

[6] Rafanelli, Maurizio. Multidimensional Databases: Problems and Solutions.

Hershey: Idea Group Publishing, 2003.

[7] Russel, Stuart and Peter Norvig. Artificial Intelligence: A Modern Approach. Upper

Saddle River: Pearson Education, Inc, 2003.

[8] Sedgewick, Robert. Algorithms in C++: Fundamentals, Data Structures, Sorting,

Searching. Boston: Addison-Wesley Publishing Company, Inc., 1998.

[9] Sedgewick, Robert. Algorithms in C: Graph Algorithms. Boston: Addison-Wesley

Publishing Company, Inc., 2002.

[10] Thomsen, Erik, George Spofford, and Dick Chase. Microsoft OLAP Solutions. New

York: John Wiley & Sons, Inc, 1999.

 19

	1 Introduction
	3 Proposed Design
	Figure 1 - No agents connected, no dimensions created
	Figure 2 – Agent connected, dimensions and cube created

	M7 – M6
	M7 – M5
	M5 – M6
	Figure 9 – Projectile of data based on X- Y- surface
	5 Motivating Applications
	6 Discussion & Conclusion
	References

