
Development of a Physics Engine
Timmy Loffredo

TJHSST Computer Systems Lab 2005-2006

Abstract
Accurate and fast physics simulation is becoming

increasingly standard in the gaming industry. A good
physics engine can earn big accolades for a game, while a
sub par physics engine can significantly bring down the
overall immersive experience of a game. The goal of this
project is to create a working physics engine independent
of any game it might run on. A rudimentary implementation
of 3D graphics using LWJGL, an OpenGL port for Java, is
also part of the project for visual testing and
demonstrations.

The simulator's scope encapsulates a section of
Newtonian physics called rigid body dynamics. In this
system, objects cannot bend, break, or deform in any way.
Any number of arbitrary 3D polygonal solid can be defined
in the simulator, as well as spheres, point masses, and
plane surfaces. All such objects are subject to Newton's
three laws of physics. Gravity and air friction can be
activated, if the user decides to do so. Arbitrary and
capricious test forces are allowable. The objects interact
with each other through collisions. The project also has an
implementation of springs, which can be attached either to
objects or free space.

Rotation and orientation in three
dimensions is tricky. There are
several ways that they can be
represented in modern physics
engines. This project uses 3x3
matrices. This matrix, when
multiplied by the 3x1 position vector,
gives you the rotated position
vector.

Results
Designing the program with arbitrary forces in mind from the beginning

paid off. Rotational kinematics, which I thought was going to be a very difficult
subject, ended up performing flawlessly and adding lots of realism.

Springs have been surprisingly useful and impressive for simulation.
Springs can make simulations more fun and interactive, and make interesting
patterns when combined in some kind of structure. A network of point masses
connected with springs, for example, simulates cloth very well. I never expected
to be able to simulate cloth, but in the end, it was a fairly easy thing to do.

Collisions are more problematic. Implementing collisions can be split into
two tasks: collision detection, deciding when a collision has taken place; and
collision response, changing the object's position/velocity/acceleration when
they do collide. My current collision detector works well for spheres, but only
intermittently for other solids depending on how the solids collide. Collision
response also has problems. Objects often bounce off in the wrong direction if
the colliding objects start off with angular momentum.

This project was a learning experience and a success. Trying to create my
own physics engine gave me a good idea of the depth of computer physics. It
also gave me the background research I need to pursue my interests in other
areas of physics, like deformable bodies and joints. I am proud of the crowning
achievement of this project, a playable pool game. In the end, I am glad I did
the project, and would encourage future tech lab students to consider creating a
physics engine for their project.

As we all know from physics, velocity is the integral
of acceleration over time and position is the integral
of velocity over time. When working with arbitrary
forces, however, analytic integrals are impossible.
Instead, an approximation for integrals must be
made, using what is called a numerical integrator.
One such integrator is called the Euler method,
where the function is assumed to stay constant over
some delta t, and is recalculated afterward for the
next delta t. This method introduces lots of error,
therefore, I used the leapfrog method. It is basically
the same, except it uses the midpoint of the function
as its approximation instead of the left or right
endpoint.

This screen shot was taken from a
prototype of the program simulating
a network of point masses with
springs attached between
orthogonal and diagonal neighbors.
The only thing being drawn are the
springs themselves. The network
acts much like some kind of cloth –
a napkin or something similar. The
more point masses and the higher
the density of point masses, then
the more accurate it looks.

This screen shot was taken from the
program simulating a pool game.
The user can hit the cue ball
whenever the other balls are resting.
Collisions are detected between a
sphere and another sphere by
checking the distance between the
spheres against the sum of their
radii. Collisions against a surface
are detected using a planar equation
that tells which side of a plane a
point is on.

