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Abstract

A computer program was designed and implemented in Java to optimize the placement of chemical
and biological (CB) agent sensors to best protect an installation. This was accomplished through the use
of various optimization algorithms, combined with a Monte Carlo simulation method which determined
relative utility functions for various sensor arrangements.
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1 Introduction

Weapons of Mass Effect pose a threat to any facility, especially military targets. Although nuclear attacks
are often considered, chemical and biological attacks can be no less devastating. However, sensors exist that
can detect such assaults, allowing the base to either avoid the attack (Detect-To-Warn situations) or treat
any affected individuals and equipment (Detect-To-Treat situations). It is necessary to determine the most
effective sensor placement to ensure that a base is well protected; unfortunately, as many of the tools that
simulate such incidents are extremely detailed and complicated, running simulations on them to determine
optimal sensor placement can take a prohibitively long amount of time. The development of a new tool that
can both quickly simulate such attacks and optimize the placement of sensors to detect those attacks was
needed for practical sensor optimization purposes.

The software to quickly simulate many attacks existed in a C++ application called “Sensor Geometry,”
which used a Monte Carlo simulation, randomly placing 500 potential biological attacks on a target, and
then determined how effective the sensor arrangement was at detecting the attacks. However, using this
tool to optimize sensor placement was still difficult, as thousands of individual scenarios would have to be
manually entered to ensure accurate optimized results. A new application was developed, which used the
original’s basic methodology to automatically sample different sensor configurations until an optimal one
could be determined.

2 Design and Development

2.1 Equipment

Although the original Sensor Geometry application was written in C++, conversion to Java had been a
previously suggested enhancement[6]. The main benefit of Java was its platform independent capabilities,
as one desired design feature for the new program was compatibility with many systems. Java is also an
object-oriented language, which is useful for large-scale modeling problems. In order to ensure that older
computers could run the program, all of the code was written to be compatible with an older, more common
version of Java (J2SE 1.4.2, available since June 2003), so that users do not need to upgrade their Java
installation.

The majority of the development work was done on a desktop computer using Windows 2000 Professional
as its operating system, a 2.4 GHz Pentium 4 processor and 1 GB of RAM, but the application was also tested
on computers running Windows XP, Mac OS X and Debian Linux, to ensure compatibility. Additionally,
the program was written so that it could be run either as an application or as a web applet.

2.2 Procedures
2.2.1 Base Configuration

The major objective of the program is to determine the best way to place sensors to defend an installation,
or “base.” For the simulation, a base is considered to consist of three parts. The “defended area,” which
is shaded green in the diagrams, is the installation itself. The “safe area,” colored blue, is a region that is
not part of the base, but that cannot be the source of a biological assault. A real-life equivalent might be
a large river on one side of the installation, or a fenced area surrounding the defended area. Many of the
scenarios considered did not include safe areas. Finally, the “plume spawn area,” in red, is the region where
a chemical or biological attack might originate. Each of these regions is assumed to be a rectangle, though
not necessarily all centered on the same point.

2.2.2 Sensor Arrangement

Many sensor configurations have been suggested. The three most commonly accepted arrangements are
Perimeter, where all the sensors are along the outside of the base, Uniform, which has the sensors in a
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Figure 1: Different Sensor Configurations

grid across the base, and Dice-5, which has alternating rows slightly staggered (Figure 1). These three
arrangements have mathematical justifications. A Perimeter setup has the smallest spacing between sensors
while still surrounding the entire base. Uniform configurations are the most regular arrangement that
covers the entire base, whereas Dice-5 arrangements place the sensors as close as possible to one another,
a configuration that features prominently in optimal packing [4]. This may explain its popularity in sensor
arrangements.

Additional sensors arrangements can be considered by introducing a margin, which pushes the grid further
inside or outside the base (Figure 2). A positive margin restricts the sensors to a rectangle smaller than the
defended region, and a negative margin allows sensors outside the defended area.

Although investigations had previously been made on other sensor arrangements, including Circular,
Elliptical and Random configurations, it was observed that Perimeter, Uniform and Dice-5 were the better
choices. Thus, in the optimization algorithm created, only these three configurations are considered.

One major difficulty in comparing the three arrangements is the variability of the number of sensors.
Investigations showed that a sensor arrangement was best when it mirrored the dimensions of the defended
region. For the nearly square defended region used in the data generation, it was discovered that the Uniform
and Dice-5 layouts began dipping in efficiency when their number of rows and columns differed by more than
two, so only configurations of form were used in the optimization routine, although the user can change this
factor if they wish. This restriction forces Uniform and Dice-5 grid arrangements to skip some numbers that
cannot be factored into two close integers.

2.2.3 Plume Definition

After a chemical or biological agent is released, it generally forms a plume, whose concentration contours are
often in the shape of an ellipse (Figure 3). In the program, plumes (which are modeled as isosceles triangles,
as algorithms to check area intersections for triangles are much faster than those for ellipses) are defined by
four variables, two of which are placement-related, and two of which are dimension-related. The placement
variables are the orientation of the plume, which corresponds to the wind direction and is between 0 and
360 degrees, and the spawn point of the plume, a Cartesian coordinate. The two dimension variables are
the arc width of the plume (which, for the triangle, is the vertex angle) and the major axis length (which is



Figure 2: Different Sensor Margins

Figure 3: Plume Diagram (from HPAC 4.04)



the length of the altitude from the vertex). Although this format is easy to work with and configure, it does
not lend itself towards developing realistic simulations, as plume dimensions in real life are determined by
a number of factors of the weapon release. An algorithm had been previously developed [3] for converting
real data to the program’s plume entry format. This conversion is also used in the new version and enables
reasonable simulation data, as actual wind speed data can be used to generate plumes.

In the original “Sensor Geometry” program, the plumes were dropped at a completely random orientation
[7]. Although this is still an option, the new application also supports realistic wind data. The user can
now input historical wind distribution information, allowing the program to tailor the distribution of plume
directions accordingly. If no such data is available, the program reverts to the old functionality, choosing a
direction between 0 and 360 degrees at random.

2.2.4 Simulation Methodology

The main methodology for the simulations existed in the original C++ program, but enhancements were
made in the creation of the new application. The application uses a Monte Carlo simulation method, where a
specified number of random attacks are made on the base. Each of these trials has a plume dropped randomly
throughout the plume spawn area, although subject to two restrictions. All plumes must be dropped so that
they do not originate inside the defended or safe area, as the program is designed to simulate external attacks.
The safe area and defended area thus cannot completely cover the plume spawn area, as there would be no
possible place where the plumes could be launched from. Additionally, any plume dropped that misses the
defended area entirely is discarded, as detecting misses would not concern a base.

2.2.5 Evaluation Methods

After a scenario has been run, data is stored about each of the trials, including the number of sensors the
plume contour intersected. However, as there are numerous ways of interpreting this data, five different
scoring methods (also referred to as utility functions, or performance metrics) were used to rank sensor
arrangements, some of which were normalized for easy comparison. The choice of which metric to use is left
to the user, as different users will have different requirements for their sensor grid performances [5]. Variables
that are used in formulae include:

The first scoring method, “One Hit,” considers cases with at least one sensor triggered to be successes
and non-detections to be failures. Its utility function is simply the ratio of plumes that were detected to the
total number of trials. It is normalized between 0 and 1. The mathematical formula used to determine this
score is:

No
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The second scoring method, “Multi-Hit,” considers plumes that are detected multiple times (at least
twice) to be successes and gives those plumes a weight of +1. Plumes that are not detected are considered to
be failures, and are given a weight of —1. Plumes detected once are not considered either way. Proponents
of this scoring method argue that having only one sensor activate is not necessarily good, as false alarms are
not uncommon with agent sensors [8]. The equation for “Multi-Hit,” which is normalized between —1 and
1, is:

N>2 = Ny

N

The third scoring method, “Area-Weight,” considers plumes that intersect large amounts of the base to
be more important than those that barely hit the base. It also considers plumes that are detected multiple
times to be successes, and plumes that are not detected to be failures, as in the “Multi-Hit” method, and it
too is normalized between —1 and 1:

Scorey =
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Scores = 1



The fourth method, “Power Law,” considers each sensor triggered to be valuable, but offers diminishing
returns on additional sensors. It uses a power law formula to reduce the value of each sensor, so that the
first is worth 1, the second worth .5, the third worth .25, and so forth. This score is also normalized between
0 and 1:
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The final method, “Avg. Hits,” simply considers the average number of detections for each case. It is
not normalized, and is difficult to use in comparisons. Although included in the program, no optimizations
were done with this utility function, as it proved to lack sensitivity in its evaluations:
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2.2.6 Placement Algorithm

Two optimization approaches are considered to support two different potential users. Both optimization
approaches allow the user to configure settings, including the maximum and minimum margin and number
of sensors, and the scoring method to be used in the optimization. Initial attempts at designing the opti-
mization algorithm showed that an exhaustive search of each sensor arrangement would take far too long,
but investigations into better optimization algorithms succeeded in reducing the calculation time greatly.
Appendix A contains selected code excerpts.

The first optimization method (“Placement”) would be of most use to a base commander, who has received
an allotment of sensors and wishes to distribute them for maximal effect. This optimization algorithm runs
through the three possible configurations and tries different numbers of sensors with each margin. It chooses
the distribution which scored highest on the chosen evaluation method, using a lower number of sensors to
break a tie. It has no need, therefore, for threshold input and does not consider any arrangements that
cannot logically be the solution. For Perimeter arrangements the algorithm does not try any grids with more
than three sensors less than the maximum number of sensors. Although adding a sensor would seemingly
always increase the utility, experimental data showed that not always to be the case and checking slightly
smaller numbers ensures that no possible solution is discarded. For Uniform and Dice-5 simulations, the
program also checks the arrangements with the most sensors, which also ensures that a slightly smaller but
better arrangement is not discarded without a test.

2.2.7 Allocation Algorithm

The second optimization method (“Allocation”) is meant for a commander who is deciding how many sensors
to distribute to a base, and was the focus of development. Here, the user specifies a specific evaluation
“threshold” that the sensor distribution must meet; for example, it must detect eighty percent of all attacks.
The program then finds the smallest number of sensors needed to meet this goal. Initially, the algorithm for
this method used a complete search that simply checked every data point to find the optimal one; however,
this was unfeasibly slow. To increase the speed, the algorithm was refined by using more advanced searching
methods, including Binary Search and Golden Section Search.

This method attempts to find the solution by first performing a binary search on the number of sensors
to find the place where the utility is first greater than the threshold. Once the maximum utility value for
the number of sensors has been determined, the “bisection method” algorithm [2] narrows its search field
depending on whether the value was above or below the threshold. Figure 4 shows an example utility function
, where f(n) is the number of sensors, and n represents the maximum possible utility for that number of
sensors. It is assumed that the intersection of the graph f(n) and the horizontal line (the threshold) is
between A and B. The utility function f(n) is then evaluated at the midpoint of [A, B], which is C, and
the intersection region is narrowed to [A, C], as is greater that the threshold. D, the midpoint of [A4, C], is
then considered, and is evaluated. As D is less than the threshold, the possible intersection range is further



Figure 4: Bisection Method Function

Figure 5: Golden Section Function

reduced to [D, C]. This could continue forever if any value for the number of sensors could be chosen, but
because there can only be an integral sensor count, the search will end naturally when the search region
reduces to size 1. The binary search (which runs in O(log,(n)) time) is possible because as the number of
sensors increases, the utility function virtually always increases. Were this not true, a slower linear search
(which runs in time) would be needed.

The method used to find the optimal margin (and thus the maximum utility value for a certain number
of sensors) is a golden section search [10], which finds the maximum of a function. An example function g(n)
is shown in Figure 5, where m is a margin, and g(m) is the utility function for that sensor grid (where the
number of sensors is fixed).

The 2 end points, A and B, are considered at the start. It is assumed is that there is a single maximum
in [A, B]. 2 interior points, C' and D, are then chosen. As B > C, it is determined that the maximum must
be in [A4, C]. Two more points between A and C' must be chosen, but because of the way the interior points
are selected, B will be one of those two new interior points (the other is F). B is then compared to E, and
the range is reduced to [E, C]. The search region is slowly reduced, and the method is cut off once the size



Placement Time (s) Allocation Time (s)
Trials Higher Threshold | Lower Threshold
500 97.531 100.734 70.203
1000 190.828 181.171 138.750
2500 451.300 493.816 356.252

Table 1: Optimization Time

of the search region has reached a certain accuracy level. This tolerance can be specified by the user, in
order to ensure a selected level of accuracy. The following approach [11] shows how the points B and C' are
initially chosen:

A.B, B.D,
Where B, indicates the x-coordinate of the point B, etc. Using this ratio ensures that one of the two

interior points is reused, regardless of how the algorithm narrows the search area. That equation simplifies
to:

B.D.\° B.D,
(AIB) A.B, @
B.:D, 1
VB e (3)

A.B, = 2

By using the golden ratio to select the interior points, only one calculation is required per iteration (as
it can store the result of the calculation from the previous iteration), whereas using another search method
would require two calculations of g(m) [12]. Additionally, the code needed to create this program is not
especially difficult [9]. As each calculation in this program’s adaptation of this algorithm requires a scenario
to be run, the time savings from using this search are quite substantial.

3 Data and Results

3.1 Data
3.1.1 Program Speed

One of the most important design requirements this project needed to meet in order to be useful was a speed
threshold. The main reason that existing programs were not feasible to use for optimization was due to the
length of time it took for them to finish. It was therefore necessary to examine the speed of the completed
program.

Tests were done using 500, 1000, and 2500 trials per scenario, and the number of sensors logically
had an approximately linear relationship with the speed of the program. These tests were done using the
default values of the program, which are documented in Appendix C, and using Score 1 as the utility. Both
“Placement” and “Allocation” trials were done. The results are shown in Table 1.

All of these timing trials were done on a Pentium 4 (2.4 GHz) machine with 1 GB of RAM. Timings will
certainly vary depending on available computer components.

Considering that it can take over 100 seconds to do a single simulation of one plume using the stan-
dard agent modeling program HPAC (Hazard Prediction and Assessment Capability), these times are quite
reasonable for entire optimizations.

Further analysis was done on the efficiency of running two optimizations at the same time on the same
computer. It was discovered that the optimization time doubled in such situations; however, this work was
done on a single processor, single core system. As each optimization runs in a separate thread, it would be

10



Scoring Placement Allocation

Method Higher Threshold Lower Threshold

1 (7,8) 56 sensors (6,5) 27 sensors (3,5) 15 sensors

One Hit (Uniform) (Dice-5) (Uniform)
-1.019 margin. 0.056 margin. 1.038 margin.
Score: 0.96 Score: 0.778 Score: 0.522

2 (8,8) 60 sensors (7,6) 42 sensors (5,7) 35 sensors

Multi-Hit (Dice-5) (Uniform) (Uniform)
-0.496 margin. 0.0040 margin. 0.366 margin.
Score: 0.744 Score: 0.502 Score: 0.32

3 (7,9) 60 sensors (6,7) 39 sensors (5,6) 30 sensors

Area-Weight (Dice-5) (Dice-5) (Uniform)
0.238 margin. 1.251 margin. 2.927 margin.
Score: 0.972 Score: 0.802 Score: 0.638

4 (7,8) 56 sensors (5,7) 35 sensors 18 sensors

Power Law (Uniform) (Uniform) (Perimeter)
1.038 margin. 1.485 margin. 2.152 margin.
Score: 0.637 Score: 0.505 Score: 0.306

Table 2: Optimization Results (Small Plume)

logical to assume that on a dual core or dual processor system, each optimization’s thread would be assigned
to a different core, so that the program’s runtime would not change.

3.1.2 Sensor Grid Analysis

Initial results showed that the best geometry varied greatly, based on the user’s input. Based on a user’s
specific needs, a different performance metric should be used. Forward fielded units, where an attack is
somewhat likely would probably prefer a performance metric that considers any detection to be a success.
Rear bases, where attacks are not expected, would greatly prefer multiple detections, as an alarm raised by
a single sensor might be discarded as a false alarm. Some commanders might also consider detecting plumes
that cover large parts of the base to be paramount, which the area-weighted utility function considers.
Additionally, the power-law metric allows each sensor to be valued without greatly overweighting trials
with huge numbers of detections. Thus, data was generated for each of the four main scoring methods.
Additionally, trials were run both with a small plume, which used the default plume size with a major axis
of 10 and an arc width of 20 degrees, and with a large plume, which extended the major axis length to 25
with the arc width fixed at 20 degrees.

Where not otherwise specified, all of the data was generated using the default parameters, as listed in
Appendix C, but with 2500 trials, to ensure greater accuracy. The results for higher and lower polynomials
are shown in Tables 2 and 3; the thresholds used are specified in Tables 4 and 5.

After analyzing this data, it was noted that the results tended not to differ from one another based on
their grid preference, and thus, the next analysis was generated using Scoring Methods 1 and 3. The poor
performance of Perimeter sensor grids in the small plume trials was postulated to be caused by the limited
plume spawn area, as during these trials, it was assumed that the plume would spawn from within 2 km of
the base. Thus, more analysis was done on the effect of the plume spawn area on the preferred setup. The
width and height of the plume spawn region is equal to that of the defended region plus twice the “Plume
Spawn Width,” so that there is a border of the specified width surrounding the defended region. Other than
these changes, the previously mentioned defaults were used. The results are shown in Tables 6 and 7.

11



Scoring Placement Allocation

Method Higher Threshold | Lower Threshold

1 59 sensors 32 sensors 23 sensors

One Hit (Perimeter) (Perimeter) (Perimeter)
-1.104 margin. -0.415 margin. -1.104 margin.
Score: 0.998 Score: 0.984 Score: 0.954

2 60 sensors 37 sensors 26 sensors

Multi-Hit (Perimeter) (Perimeter) (Perimeter)
-0.542 margin. -0.496 margin. -0.629 margin.
Score: 0.955 Score: 0.907 Score: 0.813

3 60 sensors 24 sensors 16 sensors (Perimeter)

Area-Weight (Perimeter) (Perimeter) 1.596 margin.
0.349 margin. 0.56 margin. Score: 0.908
Score: 1.0 Score: 0.995

4 59 sensors 28 sensors 18 sensors

Power Law (Perimeter) (Perimeter) (Perimeter)
-0.204 margin. 0.877 margin. 0.268 margin.
Score: 0.769 Score: 0.711 Score: 0.602

Table 3: Optimization Results (Large Plume)

| Scoring Method | Higher Threshold | Lower Threshold |

1 .75 .8
2 ) .6
3 ) )
4 .25 3

Table 4: Small Plume Threshold

| Scoring Method | Higher Threshold | Lower Threshold |

1 .98 95
2 9 .8
3 .99 9
4 .7 .6

Table 5: Large Plume Threshold

12




Plume  Spawn | Score 1 (Threshold = .75) Score 3 (Threshold = .80)
Width (km)
1 (5,6) 30 sensors (Uniform) (6,7) 39 sensors (Dice-5)
0.084 margin. Score: 0.833 1.566 margin. Score: 0.811
2 (6,5) 27 sensors (Dice-5) (6,7) 39 sensors (Dice-5)
0.056 margin. Score: 0.778 1.251 margin. Score: 0.802
3 (5,5) 25 sensors (Uniform) (6,7) 39 sensors (Dice-5)
0.349 margin. Score: 0.756 1.631 margin. Score: 0.806
4 (4,6) 24 sensors (Uniform) (6,7) 42 sensors (Uniform)
0.041 margin. Score: 0.754 1.612 margin. Score: 0.823
5 (5,5) 25 sensors (Uniform) (6,8) 45 sensors (Dice-5)
0.137 margin. Score: 0.751 1.251 margin. Score: 0.843
6 (6,5) 27 sensors (Dice-5) (6,8) 45 sensors (Dice-5)
-0.125 margin. Score: 0.764 1.251 margin. Score: 0.821
7 28 sensors (Perimeter) (6,8) 48 sensors (Uniform)
0.0040 margin. Score: 0.75 1.038 margin. Score: 0.83
8 (5,6) 28 sensors (Dice-5) (6,8) 48 sensors (Uniform)
-0.204 margin. Score: 0.753 0.911 margin. Score: 0.805
9 29 sensors (Perimeter) (6,8) 48 sensors (Uniform)
-0.125 margin. Score: 0.761 1.038 margin. Score: 0.823
10 28 sensors (Perimeter) (7,7) 49 sensors (Uniform)
-0.3 margin. Score: 0.768 1.287 margin. Score: 0.82
Table 6: Effect of Plume Spawn Region Width (Small Plume)
Plume  Spawn | Score 1 (Threshold = .95) Score 3 (Threshold = .90)
Width (km)
1 26 sensors (Perimeter) 20 sensors (Perimeter)
-1.09 margin, Score: 0.954 0.826 margin, Score: 0.957
2 23 sensors (Perimeter) 19 sensors (Perimeter)
-0.219 margin, Score: 0.959 1.267 margin, Score: 0.958
3 17 sensors (Perimeter) 18 sensors (Perimeter)
-0.496 margin, Score: 0.95 1.449 margin, Score: 0.961
4 16 sensors (Perimeter) 18 sensors (Perimeter)
-0.204 margin, Score: 0.953 1.117 margin, Score: 0.966
5 16 sensors (Perimeter) 17 sensors (Perimeter)
-0.204 margin, Score: 0.95 1.236 margin, Score: 0.955
6 16 sensors (Perimeter) 17 sensors (Perimeter)
-0.496 margin, Score: 0.95 1.287 margin, Score: 0.958
7 (3,5) 15 sensors (Uniform) 17 sensors (Perimeter)
-0.014 margin, Score: 0.951 1.812 margin, Score: 0.954
8 (3,5) 15 sensors (Uniform) 16 sensors (Perimeter)
0.0040 margin, Score: 0.964 1.94 margin, Score: 0.95
9 (3,5) 15 sensors (Uniform) (4,4) 16 sensors (Uniform)
-0.073 margin, Score: 0.955 0.481 margin, Score: 0.959
10 (3,5) 15 sensors (Uniform) (4,4) 16 sensors (Uniform)
-0.045 margin, Score: 0.965 0.78 margin, Score: 0.957

Table 7: Effect of Plume Spawn Region Width (Large Plume)

13




3.2 Results

The data gathered through optimization showed that the length of the plume relative to the size of the base
played a major role in deciding which sensor arrangement would be best. In the initial optimization efforts,
Uniform and Dice-5 grids were best against a small plume. However, Perimeter arrangements were clearly
superior for the large plume situations, where the plume would undoubtedly stretch across the entire base.
In these cases, the plume contour may be small enough to go undetected when it reaches the first edge, but
it will be quite large when it reaches the second edge, and a Perimeter setup will likely have many sensors
in the part of the second edge covered.

Data in the plume spawn region analysis showed a similar trend. With the large plumes, a Perimeter
setup was preferred until the plume spawn region began getting large. Once the plume spawn region reached
a large enough size, the plume contours were most likely not going to entirely cross the defended area, and
the preferred grid changed to Uniform. With the small plumes, the plumes were never able to entirely cross
the defended area regardless of the size of the plume spawn region, and thus the small plumes nearly always
preferred the Uniform or Dice-5 configurations. The one exception was using a non-area-weighted scoring
method with a large plume spawn region. Here, many plumes spawned far from the base, and thus were
quite large when they reached even the first edge, meaning that they were detected by many Perimeter
sensors. However, these plumes did not cover much of the base, which explains why they had little effect on
the results for the area-weighted algorithm.

3.3 Additional Work

In addition to the work done on creating a computer simulation program, mathematical analysis of the
problem was also performed. Three major discoveries were made during this work, each of whose full proofs
appear in Appendix D. The first discovery related wind speed to sensor spacing, discovering that the spacing
needed to achieve a specified performance was inversely proportional to the square root of the wind speed.
This first proof assumed that the plume pointed directly at the base; however, a follow-up proof generalized
this discovery for a plume pointing in any direction. The third mathematical model demonstrated the
performance of a sensor grid in a windless situation, where the biological or chemical agent plume cloud
assumes the form of a circle.

4 Conclusions

After analyzing the speed and efficiency of the program, the design requirements for the program were met.
The application completes an entire analysis in a reasonable amount of time, and can perform different types
of optimizations depending on the situation. The program is also flexible enough to deal with a variety of
input parameters, allowing it to be used on many different bases.

Additionally, the analyses done with the program allowed some conclusions about the relative merits of
sensor grid arrangements to be reached. In situations where the plume contour is expected to stretch through
the entire base, a Perimeter configuration is preferable, whereas Uniform or Dice-5 is better in situations
where only a limited part of the base will be affected. Additionally, the results found imply that Uniform and
Dice-5 work well in similar situations, and that it is limits on the number of sensors that lead to preferences
between these two grid types.
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A Sample Code

This includes many samples of the actual code used in the creation of the application. Any code removed is
either GUI modification code or repetitive code, and is replaced in the sample with an ellipsis.

optimizeMinSensors () is the optimization method which calls the methods needed to find the possible
optimal configurations, then determines which one is best.

VET:

This method calls the 3 optimizeMinSensor subfunctions:

{@link #optimizeMinSensorsPerimeter(int)}, and

{@link #optimizeMinSensorsUniformDice5(int, int)} twice

(once for Uniform and Dice-5). It compares the 3 Scenarios returned,
and returns the one that has the least number of sensors.

<p>

Note that the {@link Scenario#clone()} calls are removed. See that
javadoc entries for the resons behind this.

*
*
*
*
*
*
*
*
E3
* Q@return The scenario which has the least number of sensors among the 3
* returned by the optimizeMinSensors subfunctions.
* @see Scenario#clone()

*/
public Scenario optimizeMinSensors()

{

int currBestNumSensors = Integer.parselnt(getSensorControlTextField() [1].getText());
Scenario currBestScenario = null;

Scenario sl = optimizeMinSensorsPerimeter (currBestNumSensors);
if (!continueOptimization)

return null;
if (s1 '= null)

{
if (sl.getSensorGrid() .getNumSensors() < currBestNumSensors)
{
currBestNumSensors = sl.getSensorGrid() .getNumSensors() ;
currBestScenario = si;
}
}

Scenario s2 = optimizeMinSensorsUniformDice5(currBestNumSensors,
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SensorConstants.UNIFORM) ;

if (s2 !'= null)

{
if (s2.getSensorGrid() .getNumSensors() < currBestNumSensors)
{
currBestNumSensors = s2.getSensorGrid() .getNumSensors() ;
currBestScenario = s2;
}
}

Scenario s3 = optimizeMinSensorsUniformDice5(currBestNumSensors,
SensorConstants.DICE5) ;

if (s3 != null)

{
if (s3.getSensorGrid() .getNumSensors() < currBestNumSensors)
{
currBestNumSensors = s3.getSensorGrid () .getNumSensors() ;
currBestScenario = s3;
}
}

return currBestScenario;

optimizeMinSensorsPeimeter () is the optimization method which finds the smallest number of sensors
needed to keep the score above a certain threshold, for Perimeter configurations.

/**
This method attempts to find a scenario that has a value greater than
the value held in the threshold text box, but with a few sensors as
possible. If it cannot find such a scenario, it returns null.
<p>
This method only considers Perimeter sensor arrays.
<p>

This method runs a binary search over the number of sensors. To
evaluate the score for each number of sensors, it finds the optimal
margin and score using {@link #findOptimalMargin}. It then narrows
its search field as any binary search does: If the score is below the
threshold, it searches only above that number of sensors, otheriwse it
searches only below that number of sensors.

@param m The maximum number of sensors for this method to consider.
This is passed as a parameter so that if this method is
part of a larger optimization, it can avoid checking scenarios
with more sensors than the current best scenario.

* XK X X X X X X X X X X X X X X X
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*
* @return A scenario whose value is greater than threshold, and which

* has as small a number of sensors as possible. If no such
* scenario exists, this returns <code>null</code>.
*/

public Scenario optimizeMinSensorsPerimeter(int m)

{
//LO0P variables
int sensorMin = Integer.parselnt(
getSensorControlTextField() [0].getText());
int sensorMax = m;
double marginMin = Double.parseDouble(
getMarginControlTextField () [0] .getText ());
Double.parseDouble(
getMarginControlTextField() [1].getText ());

double marginMax

double threshold = Double.parseDouble(
this.getThresholdTextField() .getText());

if (sensorMin < 1)
sensorMin = 1;

//GUI things

double[] results = new double[2];

int lower = sensorMin;

int upper = sensorMax;

int middle = O;

double upperValue = 0.0;
double upperMargin = 0.0;
boolean solutionFound = false;

while (upper > lower || (upper == lower && !solutionFound))
{
middle = ((upper + lower)/2);

results = findOptimalMargin(new Integer(middle),
marginMin,marginMax) ;

double middleScore = results[1];

if (middleScore >= threshold)
{
upper = middle;
upperMargin = results[0];
upperValue = results[1];
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solutionFound = true;

}
else if (middleScore < threshold)
{
lower = middle + 1;
}
else //middleScore == threshold
{
upper = middle;
upperMargin = results[0];
upperValue = results[1];
solutionFound = true;
break;
}

}
//The best score didn’t pass the threshold, so return null
if (!solutionFound)

{

return null;

SensorGrid sg = SensorGrid.createPerimeter(
myScenario.getDefendedArea(), middle,
1, false, results[1]);

myScenario.setSensorGrid(sg) ;

return myScenario;

}

findOptimalMargin() is a helper method for the optimizeMinSensors() optimization, which finds the
best possible margin given a certain number of sensors.

/%%

This method finds the optimal margin for each number of sensors. As the
graph of score against margin (with fixed number of sensors) is a
parabola, it tries to find the maximum value of this parabola.

It uses a Golden Ratio Search so that it only has to evaluate the
scenario at one point each time. The Golden ratio search cuts off

when it has narrowed the margin down to within <code>tolerance</code>.
<p>

The code for this method was simplified using the algorithm described at
http://www.cse.uiuc.edu/eot/modules/optimization/GoldenSection/.

@param description A description of the number of sensors or grid type
for this function. If description is an integer,
it implies a Perimeter with that many sensors, if

* X X X X X X X X X X X *
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* it is a UniformDiceStorage, it implies a Uniform

* or Dice-5 arrangement.

* @param minMargin The minimum margin to consider.

* @param maxMargin The maximum margin to consider.

*

* @return A double array of length 2. Index O is the optimal margin,
* index 1 is the score when the margin is optimal.

*/

public double[] findOptimalMargin( Object description, double minMargin,
double maxMargin)

{
double[] best = new double[2];

int scoreType = this.getScoringComboBox() .getSelectedIndex() ;
double tolerance = Double.parseDouble(
this.getToleranceTextField().getText());

double middleOneMargin = O;
double middleOneScore = 0;
double middleTwoMargin = O;
double middleTwoScore = 0;

double r = (Math.sqrt(5) - 1) / 2;

middleOneMargin = SensorConstants.decimalChange (
minMargin+(1-r)*(maxMargin-minMargin), 3);
middleOneScore = evalFunction(
description, middleOneMargin, scoreType);
middleTwoMargin = SensorConstants.decimalChange (
maxMargin-(1-r)*(maxMargin-minMargin), 3);
middleTwoScore = evalFunction(
description, middleTwoMargin, scoreType);

while (maxMargin - minMargin > tolerance)

{

if (middleTwoScore >= middleOneScore)

{
minMargin = middleOneMargin;
middleOneMargin = middleTwoMargin;
middleOneScore = middleTwoScore;
middleTwoMargin = SensorConstants.decimalChange (
maxMargin-(1-r)*(maxMargin-minMargin), 3);
middleTwoScore = evalFunction(description,
middleTwoMargin, scoreType);
b
if (middleTwoScore < middleOneScore)
{

maxMargin = middleTwoMargin;

19



}

best [0]
best [1]

middleTwoMargin = middleOneMargin;

middleTwoScore = middleOneScore;

middleOneMargin = SensorConstants.decimalChange (
minMargin+(1-r)*(maxMargin-minMargin), 3);

middleOneScore = evalFunction(description,
middleOneMargin, scoreType);

= middleOneMargin;
middleOneScore;

Thread.yield();
return best;

20



B Screenshots
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C Program Default Values

This lists the default settings used by the program. These are loaded on startup, and in many cases were
used in the data gathered for this report.

| Parameter | Default Value | Parameter | Default Value |
Defended Region Center (0,0) Sensor Grid Type | Perimeter
Defended Region Dimensions 19x 16 Number of Sensors | 36
Safe Region Center (0,0) Number of Tiers 1
Safe Region Dimensions 19 x 16 Margin 0
Plume Spawn Region Center (0,0) Center False
Plume Spawn Region Dimensions | 23 x 20 Number of Trials 500
Plume Major Axis Length 10 Random Seed 1
Plume Arc Width 20 Name “Scenario”
Wind Distribution Random

There are also many default values for optimization purposes included in the program, which are shown
below.

| Parameter | Default Value | Parameter | Default Value |
Margin Tolerance .05 Margin Min -2
Sensor Min 10 Margin Max 8
Sensor Max 60 Scoring Method | Score 1 (1-Hit)
Optimization Type | “Allocation” Score Threshold | .5
Regularity 2
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Figure 6: Wind Velocity Spacing Relationship Diagram

D Mathematical Proofs

The Sensor Geometry program is inspired by the Buffon’s Needle problem, which calculates the odds that a
needle dropped on a lined floor will land on a line. Proofs, often similar to the one used to prove the Buffon’s
Needle result, were created to develop mathematical conclusions regarding the program. In many cases, the
mathematical proofs and the data agreed, which reinforced the validity of the application.

The first proof created found the relationship between the wind speed used to create the plume and the
spacing needed to ensure a certain level of performance. The second proof expanded this idea, so that the
plume could be more general in its placement, and supported the result of the original proof. The final proof
examined the degenerate case where there is no wind, which leads the plume to expand in a circular contour.

D.1 Wind Velocity Spacing Relationship

When the Sernsor Geometry problem was initially postulated, one of the immediate hypotheses was that the
needed spacing bewteen sensors would be related to wind speed. By examining the problem mathematically,
it can be shown that this hypothesis is true for a reasonable general case, and that the needed distance
between sensors is inversely proportional to the approximate square root of the wind speed.

Consider a regularly spaced Perimeter defense. Assuming a large enough base, we can neglect the effect
of corners, and only consider sides. Consider the base Perimeter section AE. Let sensors be placed at points
A, C, and FE, where C is the midpoint of AF, and define points B and D to be the midpoints of AC" and
CF respectively.

In our proof, we need only consider the region between A and B, as it is identical (after any needed
reflections) to the region BC, CD and DE.

Consider Figure 6:

4 _4p
2

- =/HFG
m=GF
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Wind Speed vs Optimal Spacing
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Figure 7: Wind Speed vs. Optimal Spacing
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Now, consider that Point F' is placed randomly, such that 0 < I < m (such that the plume hits the
defended region) and 0 < h < ¢ (as this is the region we are considering).

m g d
Thus, the area of possible placement is / / 1 dhdl = m? Now, if A is going to be contained in
o Jo

m  pltan(4) mQtan(ﬁ)

9 . . an (3
AHFG, then 0 < h < [tan (5), so the area where the plume is detected is / / ldhdl = ——==
o Jo

1n2tan(g) mtan(g) w
P = 2 = 2 = —
detect de d 2d

g = av®, where a, b are constants and v is the wind speed. For most plume values, b ~ —0.5 [3].

w CL’Ub a

Pdetect—2d— 2d Nd\/ﬁ

The work done in [1] (shown in Figure 7) agrees with this formula, although it suggests that b = 0.55 is
a better estimate.

The above proof and corroborating data proves that the spacing needed for a specific detection probability
is inversely proportional to the approximate square root of the wind speed. This proof, however, operates
under 3 assumptions. The first is that corners of the defended area are negligent, which on a reasonably
sized base, they are not. The second assumption is that the plume will point directly at the base. Finally,
we assume that the plume’s dimensions are such that it cannot intersect 2 sensors at once, and it is this
assumption that is most worrisome. Nevertheless, given these conditions, the hypothesis regarding the
relationship between wind speed and spacing has been proven. Further work will be needed in order to prove
the same fact for the general case.
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Figure 8: Wind Velocity Spacing Relationship (General Case) Diagram

D.2 Wind Velocity Spacing Relationship (General Case)

Consider Figure 8:

Now, consider that the plume spawn is placed randomly, such that 0 <! < m (such that the plume hits
the defended region) and 0 < h < % (as this is the region we are considering). Also, —3 <y < Z. Thus,
the volume of possible placement (V) is defined by the following equation:

v, = /// 1 dvy dh dl

—g+ <tan*1(ﬁ)<€+
g TI=t /=97

If the sensor is in the plume:

Define ¢ = tan~! (%) — ~ such that:

0
< Z
9l < 5

For the sensor to be inside the plume, the distance is also restricted:

m
v/ h2 12 <
TS cos (6)

We can now use these restrictions to determine the volume of detected placements:

2
m —B- ]2
Vieteer = / / / Vol dh dl de

2
/ N "; — 12 dl do
COS

= [ 2wt (cos (9))(F - d)ean () s

Il
wlco ""c" mlco

[SIE

(S5
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Figure 9: Circular Plume Analysis Diagram

mm? tan ()
2

Finally, the probability of detecting the sensor (Pgetect) can be solved for.

wm? tan (§) mtan(g)
— _ 2
Pdetect - mdr - d
2

This expression is the same as the previous proof, and the same algebra applies to prove that d/v is
constant.

D.3 Circular Plume Analysis

If a plume is released on a windless day, it will expand spherically, if terrain is not factored in. Considering
just the 2D representation of this, it is clear the plume will be a circle. Examining once again an infinite
base, consider Figure 9. In this diagram, D is the distance between sensors and R is the radius of the plume
circle.

In both parts of Figure 9, the area that a plume can be dropped such that it will be detected is shaded
red (or yellow, which is the area where it will be detected twice), and the area where it goes undetected is
shaded blue.

Case 1 D > 2R

Here, the probability of the circle landing in the red is easy to compute:

2
™ IR

Peec =2 = __
detect = RD T 2D

The ranging cases are:

D—oo = Pdetect_)o
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Figure 10: Circular Plume Analysis Diagram - Rearrangement

D—2R = Pdetect_)z

4
Case 2 D < 2R
In this case, the probability is slightly more difficult to find.
2
Pd _ ‘KI; - Ayellow
etect RD

To solve for Ayejiow, consider Figure 10. The area of the yellow region in this diagram is the same as the
area of the yellow region in the original figure, and here,

0 D
008(5) =R
D
=2cos ! (—
0 Ccos (QR)
2 2
Ayellow = F6  REsin(6)
2
o =2 _ B (9 —sin (9))
detect — RD

Inserting this into the previous equations,

R .
Pdetect = E(ﬂ- — 0 4+ sin (0))

D
_ -1
6 = 2cos (2R)

The ranging cases are:

D—2R = Pdetecteg

D—0 = Pyetect — 1
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Figure 11: Pgyetect VS. spacing

Figure 12: Derivative - Pjetect VS. Spacing

The ranging cases for bose Case 1 and Case 2 are reasonable, as the two agree at D = 2R. Also, as the
spacing approaches 0, every plume is detected, and as the spacing becomes infinte, no plumes are detected.

The derivative of this equation is also continuous, although it does have a sharp point at. At that point,
the derivative is at a minimum, implying that it is then that the loss or gain of one sensor would have the
largest effect on the success rate of the array. The graph of Pyetect vS. spacing is shown in Figure 11; the
derivative of this graph is shown in Figure 12 (Graphs created using GCalc.net).
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