Welcome to Sigma Lisp

This short overview should answer some basic questions about Sigma Lisp and why we choose to develop it. To skip this and learn how to run the program continue to the next page.

A Basic Overview

Sigma Lisp is a dialect of Lisp that stresses expressive power. It emphasizes functional programming and recursion as opposed to imperative programming and explicit loops. The goal is a cleaner and more expressive Lisp. Sigma is a Lisp1 like Scheme, allowing functions to be passed easily. However, Sigma uses Common Lisp macros, which are simpler and more powerful than their Scheme counterparts. Macros are first-class objects in Sigma which can be passed to apply or reduce. We wrote as few native functions as possible, preferring functions and macros such as reduce, mapcar, for, and backtick in pure Sigma. This allows for faster, easier, and safer library development. The program is designed to be as compartmentalized and stable as possible, using bottom-up design and functional programming.

Basic Components of Sigma

The program's fundamental component consists of a series of basic data structures such as hashes and strings. One of these, the Array structure, acts as a scanner on an independent array of data. The Array structure can obtain its conceptual 'cdr' in O(1) time, while maintaining O(1) random access by storing the offset from the native array and creating new Arrays which share the same native array but have different offsets. Everything in Sigma is represented by an Object structure, which stores a pointer to a structure holding its native implementation and the structure's type. Each Object also stores the current number of references to the structure. The next component, the parser, is a translative component which takes an input string and returns an Object representing an equivalent S-expression. These S-expressions are interpreted by the eval component, which evaluates an S-expression, performs any side-effects, and returns the result. This function is also provided to the language with the native eval function. Variable environments in Sigma are represented by a linked list, where each entry is a cons of a hash and a symbol representing the level. The main benefit of this organization is that scopes can be stored in closures and left to be deleted by the garbage collector, rather than explicitly deleted.

How to run Sigma Lisp

To try out our program you can follow these instructions to obtain a copy. Continue down to see a list of sample inputs to try out for those of you unfamiliar with Lisp.

Download Sigma.zip from http://www.tjhsst.edu/~sdavis/Sigma%20Lisp/
Unzip Sigma.zip
type:

cd Sigma

./a.out

Some sample inputs

Any valid Lisp expressions should work. (For example: for loops, while loops, if-else expressions, math, etc.)

Program's expected response(s):

Just what you would expect if you were running any other functional

dialect of Lisp. In the examples given below the expected response is

given in addition to the input so you can check to make sure everything is

working properly.

Notes:

Sigma Lisp throws an exception for run-time errors and doesn't accept any syntax errors.
The program is demonstrating a working dialect of
Lisp. The user, at this stage, should be checking for correct processing of basic commands. Also, Sigma Lisp is capable of using first class macros. So, the user should also check for the level of abstraction and use of macros.

Examples of Sample Inputs

?>: (def transpose (m) ; transposes a matrix

...
(apply mapcar (cons list m)))

?>: (transpose '((a b c) (d e f) (g h i)))

-> ((a d g) (b e f) (c f i))

?>: (def list-of (n a)

...
(if n

...

(cons a (list-of (- n 1) a))

...

nil))

?>: (def knuth (n) ; Knuth's up-arrow operator

...
(if (eq n -1) ; a ↑-1 b = a + b

...

+ ; a ↑n b = a1 ↑(n-1) a2 ... ↑(n-1) ab

...

(fn (a b) (reduce (knuth (- n 1)) (list-of b a)))))

?>: ((knuth 2) 3 3)

-> 19638

?>: (for (local k 0) (< k 10) (= k (+ k 1)) (print k “ “))

0 1 2 3 4 5 6 7 8 9

-> ()

?>: (defmac ++ (var)

...
`(= ,var (+ ,var 1)))

?>: (for (local k 0) (< k 10) (++ k) (print k “ “))

0 1 2 3 4 5 6 7 8 9

-> ()

?>: (defmac times (var n)

...
(let sym (gensym)

...

`(let (,var 0 ,sym ,n)

...

(for nil (< ,var ,sym) (++ ,var)

...

,(cons 'do _)))))

?>: (times k 10 (print k “ “))

0 1 2 3 4 5 6 7 8 9

-> ()

?>: (let k 9

...
(times k (+ k 1) (print k “ “)))

0 1 2 3 4 5 6 7 8 9

-> ()

?>: (apply or '(0 0 0 1 0))

-> 1

?>: (quit)

Goodbye

