
GameBoard

Square

Entity Terrain Weather

Design and Implementation of an
Interactive Simulation Using the JAVA
Language Through Object Oriented

Programming and Software Engineering
Techniques

Dan Stalcup

TJHSST Computer Systems Lab 2005-2006

Abstract
As logarithms and set-ups for interactive simulations

(games) become more and more complex, the method in
which such projects are approached, designed, and
implemented requires careful analysis. Others have
studied theories of object orientation, and have
hypothesized on the ways to optimize the development of
complex computer programs. This study encompasses
the engineering and construction of a complex interactive
simulation called “Project Dart Hounder” with an object
oriented approach, analysis of the process, and results.

Upon analysis of the effectiveness and complexity of the resulting product, mixed conclusions were reached. While breaking down
problems into objects often simplifies the solution, it occasionally makes it more complex. Careful judgement is required, and very
thorough planning and design is even more essential: without effective planning and design, object-oriented programming loses a
majority of its value. But when used carefully and smartly, object-oriented programming is a highly effective method of problem
solving and software development, especially when working with large groups of people.

Entity objects are the agents of
interaction on the gameboard. By
controlling entities and allowing them
to interact with other entities, Dart
Hounder is being “played.” There
are two basic types of entities:
characters and noncharacters.
However, all entities have certain
traits: each instance of an entity
has a name, a position (which
matches the position of the square it
is in), an HP (which stands for Health
Points) value as well as a constant
maximum HP value, and information
as to whether the the entity is a
Character. Each subclass of entity
also has a unique ID.

Gameboard: The gameboard is the
over-arching GUI in which the
simulation runs. The gameboard's
primary purpose is to communicate;
it communicates between the user
and its programs and also between
the different objects of Project Dart
Hounder. The gameboard's second
purpose is to keep track of the
specific situation of the simulation by
keeping references to special,
specific objects, such as the
currently selected character.

Weather: Weather affects the
environment that the entities reside
in. Weathers use two values to
determine their affect on attacks,
brightness and precipitation.

Unlike terrains, there are no
subclasses of weather. Rather,
different instances of weather are
determined by four specific cases
implemented into the Weather class
itself, represented by an integer.
The integer used to represent each
case represents its severity, where
0 (clear skies) is the least severe
while 3 (stormy skies) is the most
severe.

Terrain: Terrain represents the
environment that the entities reside in.
Each one stores various values about
itself, including density, visibility,
temperature, and elevation or height.
Each one of these plays a role in the
effectiveness of any attacks from or
against another entity. Terrains also
have a specific color, which is only for
clarification by the user, and does not
directly affect attacks from or to the
square.

Each of these values are stored as
basic data in the terrain class and can
be accessed through a reference to any
terrain object.

Square: The square represents one
block on the playing field. Each square
holds three objects: a terrain, a weather,
and an entity,

These three objects are stored as
direct references in the squares. Each
square will hold exactly one terrain,
exactly one weather, and either zero or
one entity.

It is possible to access and acquire
any of the objects contained in the
square by having access to the square.

Each square has a position, a
coordinate of two numbers, row and
column or “x and y” to represent where
it lies on the playing field.

Character: Characters are the more
complex of entities. They are
controlled by the players.
Characters are the primary units of
interaction between the players.

Noncharacter: Noncharacters are the
simpler of the two types of entities.
Noncharacters are not controlled by
players.

Noncharacters have all of the traits of
generic entities, plus two others: Each
Noncharacter has simple Boolean
functions that return whether or not they
are living and whether it is moving.

These traits result in three subclasses of
noncharacters: minerals (neither living
nor moving), plants (living but not
moving), and animals (living and moving.
/if I make each one do something
distinctly different, discuss here/

