The Simulation of Traffic Patterns and the Optimization of Traffic Lights by Gregg Tabot TJHSST Computer Systems Lab 2005 - 2006

Background Information:

Traffic lights are essential to the commuter patterns on major roads and highways today. Many drivers have experienced the operation of a single traffic light that has either delayed or advanced drivetime. With increased traffic congestion the challenge of efficiently operating traffic lights becomes a greater concern. My project is to find a useful algorithm for the operation of traffic lights to advance drivers as quickly and efficiently as possible. This simulation or modeling program takes into account two heuristics: the number of cars on the road and the particular situations at various time increments of cars waiting to advance in lanes under observation.

Project Description

My project allows simulation of traffic using three different strategies: Manually, Timed, and Frequency Formula - a method I created for this project's analysis. The Manual Method allows the designer to switch the traffic lights manually. The Timed method switches the lights after a preset period of time. The Frequency Formula method is an autmatic switch taking into account the number of cars on the road at the time.

Graphic Outputs

Black: Total Cars Green: Moving Cars Red: Stopped Cars

Different Methods

Manual method: A method based on user input meaning it switches lights when told to do so.

Timed method: Compares the amount of time a light has been green with the light timer option set. If the amount of time a light has been green is greater than or equal to the light timer option this light switches.

Formula method: If the flowing traffic frequency of the stopped cars multiplied by a timer is greater than or equal to the stopped traffic frequency multiplied by the quantity of the timer subtracted from maximum wait time, the light switches.

