
Background
For some time now, there has been a need for a

symbolic algebra module for Ptolemy II. Ptolemy II is a
programming environment that contains VERGIL, a
two-dimensional visual programming interface. This
application is being developed in the Center for Hybrid and
Embedded Software Systems (CHESS) in the Department of
Electrical Engineering and Computer Sciences (EECS) of the
University of California at Berkeley. It is used mainly
for heterogeneous and concurrent modeling and simulation of
physical systems.
Currently, the Ptolemy II program is limited to simple
algebraic manipulations and up to three-dimensional
representation and visualization of bodies. With the
development of a module with symbolic algebra capabilities,
the capabilities of Ptolemy will be greatly expanded.
Users will be able to model physical systems governed by
complex physical rules.

Abstract
Development of a symbolic algebra module for a

two-dimensional visual programming and modeling environment
would greatly increase the productivity and efficiency of
research dealing with composite materials at NRL. The work
under this effort developed such a system. With this new
technology, a researcher can enhance the ability of
conducting complex virtual experiments remotely. This new
program would greatly reduce the need for uncertain and
expensive system design and prototyping.

Symbolic Algebra and Visualization
Enhancements of a 2D-Visual
Programming Environment for

Multiphysics Mechatronic Systems
Simulation

Panayiotis Steele
2005-2006

Mentoring Firm - NRL

Significance of the Project
In the Computational Multiphysics Systems Laboratory

at NRL (CMSL), there is a complex mechatronic system named
the 6D-Loader. It is termed mechatronic because it
incorporates mechanical engineering with electronics,
computer systems, and advanced controls. The system has six
degrees of kinematic freedom for applying displacements and
rotations to certain selected composite material specimens.
It also measures the specimens¿ reaction forces and moments
that are a consequence of the forces applied on the
specimens.

However, the machine's kinematic behavior is
described by a very complex system of non-linear equations.
The behavior of any given specimen is governed by a coupled
system of partial differential equations. Due to their
complex nature, these equations are not solvable by hand.
A computer algebra system, such as Mathematica, is essential
to obtaining a solution to either of these systems of
equations. Ptolemy II, along with its 2D visual programming
editor, Vergil, will be used to model both the visual and
functional behavior of the machine.

The completion of the symbolic algebra module has
opened new realms of possibility for the CMSL. The 6D-Loader
is a complex and often cumbersome machine to operate; thus
it is only used for experiments once a year at most.
Ptolemy II's integration with Mathematica, in the form of the
module, allows the researchers at the CMSL to model the
6D-Loader¿s visual and functional behavior, along with the
visual and functional behavior of the composite material
specimens. When the models of both 6D-Loader and specimens
are finished, a researcher will be able to simulate an
experiment remotely. Essentially no preparation will be
required to run such a remote experiment simulation.

Development

In order to develop the module, I needed to find a
way to connect to the Mathematica kernel in a Java program.
Since Ptolemy II is written entirely in Java, programmers
wishing to extend it must program their modules in Java.
The way presented itself through a library for Java
programmers now distributed with Mathematica, J/Link.
J/Link is the stipulated method to connect to the Mathematica
kernel externally, i.e. outside of the Mathematica front
end. It uses the previous interface, MathLink¿a library
for C and C++ programmers¿and creates numerous higher-level
methods for accessing the kernel, which MathLink did not
have. J/Link has dual compatibility. For Mathematica
programmers, it extends the Mathematica programming
language, allowing them to use Java classes in their
Mathematica programs. For Java programmers, it allows
Mathematica to be used as an interactive shell for testing
Java classes and applications one line at a time, and also
use the Mathematica kernel as a computational engine¿in the
background for Java programs needing a complex mathematical
computational engine.

Programming the module for Ptolemy II fell into the last
category, so I consulted the J/Link documentation for
information about how to connect to the Mathematica kernel.
First, a standalone application was developed to test the
algorithm developed to access the kernel. Then, using the
code conventions for creating actors specified by the Ptolemy
Project, the algorithm used in the standalone application
was used in the three classes--MathematicaActor,
ExprEvaluator, and JLinkGfxPanel--that comprised the
actor. This actor could connect to the Mathematica kernel,
accept a valid Mathematica expression presented to its input
port in String form, send it to Mathematica, and return
the result. If the result was some kind of graphics, such as
the graph of a function, then the actor displayed the result
in a pop-up JFrame (see Fig. 2).

However, to model the behavior of the machine, the actor
needed to also be able to accept Mathematica programs, in the
form of text files, as input. To solve this problem,
another actor, ProgramReader, was created. This actor took a
specified text file, converted it into one line, and sent
the resulting String object to its output port. When
connected to a MathematicaActor, the ProgramReader allows the
reading in and execution of Mathematica programs
(see Fig. 3).

Code Validation

Any Ptolemy model that uses mathematics can use a
MathematicaActor. For instance, the Bouncing Ball model can
be easily simulated using a MathematicaActor in place of the
built-in Ptolemy II mathematics. Another more complicated
example is the angle converter in the Furuta Pendulum example
(from the Ptolemy II Tour page). It can be just as easily
implemented with Mathematica commands (see Fig. 4) as with the
Ptolemy II expression language. The only difference in the
model's execution is the speed of the model; this issue, as
of yet, has an unknown cause.

Future Improvements and Conclusions
This project can still be extended. For improved

visualization of three-dimensional graphs, the module can be
integrated with a software package named JavaView. JavaView
allows the user to rotate, translate, and resize Java3D images.
It is already integrated with Mathematica, so it would not be
much of an endeavor to integrate JavaView with Ptolemy II.

Another possible augmentation of this project is using
the same Mathematica kernel for the whole execution of the
program
. Currently, a new kernel is opened and closed every time a
computation is requested in a model containing a
MathematicaActor. This method of execution is not desirable, as
it increases greatly the time that is required to run a model that
loops around a MathematicaActor, or to run a model that contains
several MathematicaActors. Keeping the original kernel open for
the whole duration of such a model's execution would decrease
the CPU cycles needed to perform the computations.

Finally, there is occasionally a need to explicitly specify
in Vergil what kind of output and/or input the MathematicaActor
and other modules in the same model will be receiving or sending,
most notably when ProgramReader is part of the model. The
cause of this need for explicit port typecasting is not known;
further investigation must be done.

Despite the limitations of the project in its current state,
it will still be of great use in the CMSL. We hope that, eventually,
the MathematicaActor and its accompanying programs will be
included in future releases of Ptolemy II, and be useful to Ptolemy
users around the world.

Commercial Software Used

Ptolemy II is the next generation of heterogeneous
simulation and design software. It implements and extends
the functionality of Ptolemy Classic, its predecessor, which
was also developed at CHESS at the EECS Department of Berkeley.
In addition to Ptolemy Classic¿s models of computation, Ptolemy
II supplies new models of computation and a more user-friendly
graphical user interface (GUI). The Ptolemy Project studies
modeling, simulation, and design of concurrent, real-time,
embedded systems, with a focus on the assembly of concurrent
components.

VERGIL, the GUI of Ptolemy, is where programmers can
design systems. By choosing from a wide variety of execution
modes, almost any kind of system can be developed. Inside VERGIL,
computation models are termed "directors" and modules "actors."
By connecting actors¿ input and output ports, an efficient and
easy-to-understand model of almost any system can be created.

Mathematica is the dominant program of mathematical
computation, and has been ever since its first release in 1988.
At first it was mainly used for physics, engineering, and
mathematics. But over time, Mathematica has made a great impact
on a wide variety of disciplines. It is now used extensively
throughout the sciences--biological, social, and physical, for
example--and has played a key role in many important discoveries.
It is widely regarded as a great feat of engineering. Mathematica
is one of the largest standalone applications ever created.
Its enormous collection of unique algorithms and technical
innovations provide it with enough versatility to solve almost
any problem. Engineers rely on Mathematica as a standard tool
for development as well as production.

Fig, 4: Two ways of implementing the angle converter for the
Furuta Pendulum.

Fig. 2: A simple model demonstrating the how the graph of a 3D
function is handled in the MathematicaActor.

Figure 1: Mathematica allows users to perform tasks such as
plot three-dimensional graphs of functions, along with many
other mathematical tasks.

Fig. 3: A model demonstrating the loading and execution of
a Mathematica program the computes a density plot.

